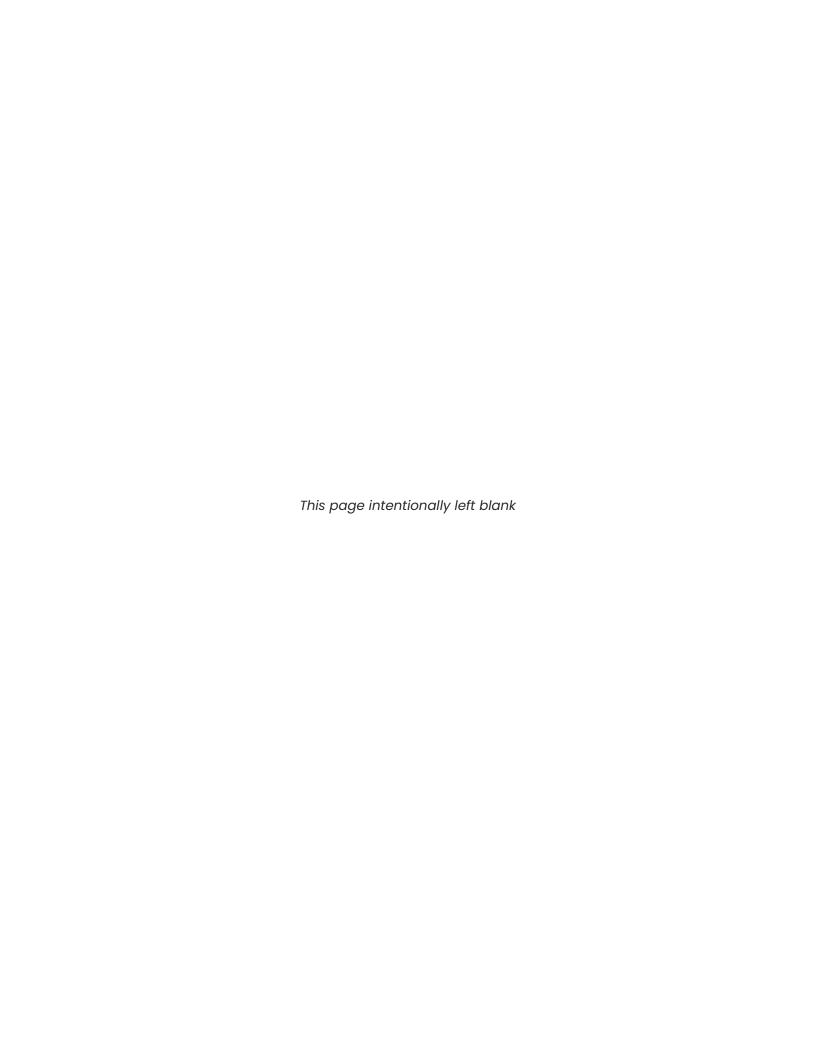


FINAL DRAFT


OCTOBER 14, 2025

CONTENTS

Key Findings	6
Introduction	9
Existing Travel Patterns	10
Commute Trips	10
Job Housing Mismatch	11
Traffic Flow Pattern and Peak Hour	11
Mode Choices	15
Daily Trip Origin-Destination (O-D) Travel Patterns	17
Vehicle Miles Traveled	18
VMT Lexicon	18
VMT of Davis	19
UC Davis Trips	21
Roadway Network	23
Roadway Functional Classifications	23
Traffic Operations	28
Methodology	28
Existing Traffic Conditions	29
Truck Routes	33
Transit Services	36
Transit Network	36
Unitrana	26

Yolobus 3 Amtrak 3 Transit Ridership and Operations 4 Unitrans 4 Yolobus 4 Amtrak 4 Active Modes in Davis 4 Bike Facilities 4 Grade-Separated Crossings 4 Bicycle-Specific Traffic Signals 4 Bicycle Parking 4 E-bike and Scooters in Davis 5 Pedestrian Network in Davis 5 Pedestrian Facilities 5 Walking Environment 5 Transportation Safety 5 Local Road Safety Plan Review 5 Collision Analysis of Year 2022 to 2024 5 Bike Collisions 5 Pedestrian Collisions 6 Local Safety Actions 6	Davis Community Transit (DCT)	37
Transit Ridership and Operations		
Unitrans 4 Yolobus 4 Amtrak 4 Active Modes in Davis 4 Bike Facilities 4 Grade-Separated Crossings 4 Bicycle-Specific Traffic Signals 4 Bicycle Parking 4 E-bike and Scooters in Davis 4 Pedestrian Network in Davis 5 Pedestrian Facilities 5 Walking Environment 5 Transportation Safety 5 Local Road Safety Plan Review 5 Collision Analysis of Year 2022 to 2024 5 Bike Collisions 5 Pedestrian Collisions 5 Local Safety Actions 6	Amtrak	39
Yolobus 4 Amtrak 4 Active Modes in Davis 4 Bike Facilities 4 Grade-Separated Crossings 4 Bicycle-Specific Traffic Signals 4 Bicycle Parking 5 E-bike and Scooters in Davis 5 Pedestrian Network in Davis 5 Walking Environment 5 Transportation Safety 5 Local Road Safety Plan Review 5 Collision Analysis of Year 2022 to 2024 5 Bike Collisions 5 Pedestrian Collisions 6 Local Safety Actions 6	Transit Ridership and Operations	41
Active Modes in Davis	Unitrans	41
Active Modes in Davis	Yolobus	44
Bike Facilities	Amtrak	46
Grade-Separated Crossings	Active Modes in Davis	47
Bicycle-Specific Traffic Signals	Bike Facilities	47
Bicycle Parking	Grade-Separated Crossings	49
E-bike and Scooters in Davis	Bicycle-Specific Traffic Signals	49
Pedestrian Network in Davis5Pedestrian Facilities5Walking Environment5Transportation Safety5Local Road Safety Plan Review5Collision Analysis of Year 2022 to 20245Bike Collisions5Pedestrian Collisions6Local Safety Actions6	Bicycle Parking	49
Pedestrian Facilities	E-bike and Scooters in Davis	49
Walking Environment	Pedestrian Network in Davis	51
Transportation Safety	Pedestrian Facilities	51
Local Road Safety Plan Review	Walking Environment	51
Collision Analysis of Year 2022 to 2024	Transportation Safety	53
Bike Collisions	Local Road Safety Plan Review	53
Pedestrian Collisions	Collision Analysis of Year 2022 to 2024	57
Local Safety Actions63	Bike Collisions	58
	Pedestrian Collisions	61
Transportation Costs and Funding	Local Safety Actions	63
Transportation Costs and Funding 64	Transportation Costs and Funding	64
Pavement Conditions in Davis64	Denverse and Operalities as in David	6.4

Cost of Maintaining the Current Transportation Network	. 65
Funding	. 65
Transportation Demand Management	67
Yolo Commute	67
Appendix A: Data Source Comparison	70
Appendix B: LOS Performance Measurement Results	. 74
Appendix C: Detailed Transit Ridership Information	. 84
Appendix D: 2023 LRSP Collision Maps	. 88

KEY FINDINGS

This Mobility Existing Conditions Report provides an overview of the transportation system in the City of Davis, including existing travel patterns, transportation facilities, roadway performance, active transportation, transit, safety, pavement conditions, and transportation demand management programs. The purpose of this report is to document the current state of mobility in Davis and to help inform the 2050 General Plan Update.

The City of Davis transportation system accommodates personal driving, goods movement, public transit, bicycling, and walking. This system supports mobility within Davis and extends connectivity beyond city limits. Known historically for bicycle infrastructure, Davis introduced the first bicycle lanes in the United States in the 1960s, contributing to its local and regional identity as a bicycle-centric community. The City's mild climate and flat terrain provide favorable conditions for bicycling and walking, facilitating active transportation modes.

Commuting Patterns: Commuting patterns in Davis, including the campus, reveal a jobshousing imbalance. As of 2022, approximately 76 percent of individuals working in Davis lived outside the city, while 84 percent of employed Davis residents commuted to jobs elsewhere. However, since UC Davis is outside of city limits, the Census shows this travel as residents leaving the City of Davis for work. When City and UC Davis boundaries are combined, about 65% of residents commuted elsewhere for work, reducing the outbound share of travel.

Nonetheless, this mismatch contributes to high volumes of inbound and outbound travel during peak hours, with the most common external commute destinations being the City of Sacramento, UC Davis², City of Woodland, and the Bay Area. The average commute time for Davis residents ranges between 19 and 21 minutes, slightly below the county and regional averages. More than half of Davis residents drive alone to work, although Davis maintains a relatively high share of commuters who walk, or bike compared to neighboring communities. As of 2023, Davis had a high work-from-home rate of 23%.³

Traffic Flow Pattern and Peak Hour: Traffic flow data shows persistent peak-period congestion on I-80, particularly in the eastbound direction during the afternoon hours. Travel speeds routinely drop below 20 mph between 2:00 PM and 6:00 PM.⁴ However, existing seat utilization studies suggest that the core challenge is not a lack of physical infrastructure, but rather the difficulty in filling empty vehicle seats across most modes.⁵

¹ According to 2022 Longitudinal Employer-Household Dynamics (LEHD)

² UC Davis refers to the main campus located southwest of the City of Davis. Unless otherwise specified, the UC Davis Medical Center in Sacramento is not included as part of UC Davis in this report.

³ According to Census American Community Survey (ACS) 2023 5-years estimates

⁴ According to 2024 Performance Measurement System (PeMS)

⁵ Fehr & Peers, 2020. Additional information can be found at https://www.fehrandpeers.com/blog/congestion-and-seat-utilization/

Vehicle Miles Traveled: Residential and work vehicle miles traveled (VMT) per capita in Davis are higher than the regional average. Davis generates 30 residential VMT per capita and 33 work VMT per employee, compared to the SACOG regional averages of 22 and 20, respectively. Additionally, UC Davis—located adjacent to the City of Davis—is a major contributor to travel in and out of Davis, generating approximately 35,500 daily trips to Davis. A large share of these trips are for shopping and dining purposes.

Street Network: Davis maintains approximately 166 miles of streets categorized into arterial, collector, and local streets. Arterials constitute about 20% of the road network and carry the highest traffic volumes. Collector streets account for 21% and link residential areas to arterials. Local streets, primarily residential, represent 59% of the network. The current network of bike lanes and pathways are described below.

Active Modes in Davis: Bicycling facilities in Davis include 43 miles of bike lanes, 13 miles of buffered bike lanes, 2 miles of sharrows, 0.5 miles of cycle track, and 63 miles of shared-use paths. Davis has over 25 grade-separated bicycle crossings of major streets, including I-80, State Route 113 and major arterials, designed to enhance safety and accessibility for bicyclists. Bicycle parking facilities are widely distributed throughout Davis, supported by local ordinances that ensure adequate bicycle parking is available in new developments. Currently, Davis has bicycle and pedestrian wayfinding signage in South and East Davis, and this system will soon be expanded citywide. Additionally, in partnership with the Davis Joint Unified School District (DJUSD), the City supports the Safe Routes to School program, which promotes active transportation for students. The program includes initiatives such as "Polar Pedal," which offers winter incentives to encourage walking and biking in colder weather, free helmet distribution, bicycle safety education, and more.

Pedestrian Network in Davis: The majority of city streets include sidewalks on at least one side, especially in central neighborhoods and commercial areas. However, some areas still lack sidewalks, primarily along the outer edges of Davis and within select residential subdivisions.

Traffic Operations: Over 130 study segments, including local roadways and freeway facilities, were identified based on the current General Plan and input from City staff. Level of service (LOS) analysis was conducted for these segments using the LOS threshold table from the Highway Capacity Manual (HCM) 7th Edition (Transportation Research Board, 2022), with additional consideration of Davis's roadway functional classifications. Results show that most study segments operate at LOS A–C, indicating low delay for drivers. The primary exception is Pole Line Road between 5th Street and Cowell Boulevard, which operates at LOS E during the PM peak and LOS D during the AM peak, reflecting constrained vehicle throughput due to congestion. Additional segments with reported LOS E or F conditions from project–specific traffic studies include portions of Richards Boulevard, Mace Boulevard, and Chiles Road. Furthermore, I–80 east of County Road 32A/Chiles Road and west of State Route 113 operates

⁶ From SACSIM19 travel demand model (TDM) by SACOG

⁷ According to 2024 Spring Season Replica data on average weekdays

at LOS F, consistent with observed peak-hour delays along this stretch through the City of Davis.

SPIN Micromobility Program: Between July 2024 and June 2025, Spin's micromobility program in Davis experienced a total of 252,228 rides over the year-averaging approximately 691 rides per day. E-scooters accounted for roughly 73% of these trips, while e-bikes made up the remaining 27%. Approximately 62% of users made multiple trips, reflecting consistent utilization for short-distance travel across the city. High local usage of e-mobility devices in Davis reflects a broader regional and statewide shift toward electric micromobility. This trend is expected to continue shaping travel behavior and mobility patterns within the city.

Transit Services: Public transportation services in Davis primarily include Unitrans, Davis Community Transit, Yolobus, Capital Corridor and Amtrak. Unitrans service and ridership trends closely align with the UC Davis academic calendar and class schedules. According to 2023-2024 Unitrans ridership data, while most routes operate within capacity, certain lines such as U, W, and Z experienced crowding on more than 4 percent of trips, indicating concentrated demand on specific corridors and times of day.

During FY 2023–2024, 11 of 19 Unitrans lines met the 90% on-time performance (OTP) goal. Lines T, Q, and P had the highest percentage of late trips among all routes. Compared to FY 2023–2024, total Unitrans ridership increased by 12% through March of FY 2024–2025, suggesting a potential recovery toward pre-COVID levels. The average monthly Unitrans ridership for FY 2023–2024 was approximately 146,000, compared to an average of 28,000 monthly riders on Yolobus. While Yolobus ridership declined sharply during the Covid-19 Pandemic, it began recovering in 2024, although average monthly ridership on many routes remains below 2019 levels. For passenger rail services, the Davis Train Station has seen increased ridership over the past three years; however, May 2024 ridership for the Capitol Corridor is still about 30% lower than in May 2019. This suggests a slow recovery in mode choice for long-distance trips.

Transportation Safety: Transportation safety remains a core focus for the Davis, given its high rates of bicycling and walking and its demographic makeup centered around a large university population. The overall trends and findings from more recent collision data⁸ from 2022 to 2024 are consistent with the City's 2023 Local Road Safety Plan (LRSP). The most common contributing factors for automobile collisions were unsafe speed, automobile failure to yield to other vehicles or pedestrians, and improper turning, with many incidents concentrated along Russell Boulevard, Mace Boulevard, 5th Street, and streets in the downtown area. Bicycle collisions most frequently involved failure to yield and were primarily clustered near UC Davis, while pedestrian collisions were concentrated in the Downtown Davis area; however, based on data from 2022 to 2024 and 2009 to 2019, the fatal pedestrian collision was not located in Downtown Davis.

⁸ Collision data from January 2022 to December 2024 from the Transportation Injury Mapping System (TIMS) dataset

Transportation Costs and Funding: The City faces a significant funding gap in maintaining its transportation infrastructure. Achieving the City's target pavement condition index over the next 10 years is estimated to cost approximately \$109 million, while current funding levels are projected to result in a \$25 million shortfall over that period. As with many other cities in California, there is no comprehensive inventory of the costs associated with maintaining and operating the existing public transportation network, which may pose long-term financial risks due to ongoing obligations tied to system expansion.

Transportation Demand Management Programs: Davis residents and employees associated with UC Davis and other members of Yolo Commute benefit from a range of transportation demand management (TDM) programs. These include bike purchase rebates, emergency ride home program, other incentives designed to encourage shifts away from single-occupancy vehicle travel. While access to these programs is limited to employees of member organizations, they support sustainable commuting throughout Yolo County. Additional mobility options in Davis include Unitrans, the Davis-Berkeley Shuttle, and carsharing partnerships such as Zipcar.

INTRODUCTION

The City of Davis is located between Sacramento and San Francisco, California directly on the Interstate 80 (I-80) and Union Pacific Railroad (UPRR) corridors and is known for its extensive bicycle system and bicycle-friendly culture. Despite being highly accessible from these corridors, Davis has remained relatively isolated and compact due to protections against growth and expansion.

Being a little over 10 miles west of Sacramento and about 70 miles northeast of San Francisco places Davis in a unique regional position. It has one of the few Amtrak stations in the region, which also serves the Capitol Corridor intercity rail line between Sacramento and the Bay Area. Additionally, Yolobus provides regular transit services connecting Davis with nearby cities such as Woodland, West Sacramento, Sacramento, the Sacramento Airport, enhancing regional accessibility and mobility.

Locally, Davis is renowned for integrating transportation planning closely with sustainable land use policies. The City's extensive bicycle infrastructure, complemented by sidewalks and comprehensive public transit services, creates multiple travel choices for accessing the City's key destinations, University of California: Davis (UC Davis), downtown commercial areas, local schools, parks, and employment centers. Specific local initiatives, such as the Downtown Davis Specific Plan and the Beyond Platinum Bicycle Action Plan, reinforce the City's commitment to sustainable transportation and a high level of accessibility choice. Furthermore, the Davis 2020–2040 Climate Action & Adaptation Plan (CAAP) outlines a goal to strengthen transit service within Davis and between regional neighbors to support the city's carbon neutrality efforts and address climate–related risks. These initiatives aim to

⁹ According to the 2025 Pavement Management Update of Davis

encourage bicycling, walking, and transit usage, thereby reducing automobile dependency and supporting Davis's broader goals of resource conservation, energy efficiency, and environmental sustainability.

EXISTING TRAVEL PATTERNS

This section provides an overview of existing travel patterns in Davis, with a focus on both commute trips and overall travel behavior. The first part examines commute travel using data from the Longitudinal Employer-Household Dynamics (LEHD) to assess the job-housing relationship—specifically, the share of Davis residents who work within the city versus those who commute elsewhere, and likewise the proportion of local jobs filled by Davis residents versus in-commuters. ¹⁰ In addition to job-housing mismatch, this section also identifies peak commute hours based on freeway traffic patterns and explores mode choice using Replica data. The second part expands the analysis to all trips, summarizing regional origindestination (OD) patterns to provide a broader understanding of travel behavior beyond the work commute.

A variety of datasets were explored and included in this analysis. **Appendix A: Data Source Comparison** highlights key differences among the data sources, providing a comparative overview to aid in selecting the most appropriate dataset for specific needs. It is important to acknowledge that there is no "perfect" dataset for understanding travel behavior, as each source may be limited by factors such as sample size, survey design, or target population. However, by leveraging the strengths of these unique datasets, this section draws on widely adopted sources that have either been validated with observed traffic counts or applied in other regional analyses.

Commute Trips

The transportation network in Davis experiences its highest demands during morning and evening peak periods associated with school, work, and university commuting. To develop a comprehensive understanding of current commuting patterns, four distinct datasets were analyzed—each offering valuable insights into travel behavior, mode share, and peak-period traffic conditions. The discussions in this section focus on understanding travel patterns associated with the City of Davis as an individual zone, with UC Davis treated as a separate external zone.

¹⁰ LEHD data was used because it provides more robust commute trip data such as origin-destination details that are not available from ACS data that is cited in the Economic Development Existing Condition Report.

Job Housing Mismatch

Davis has a significantly different geographic distribution of where people live and work. The data¹¹ shows that 76 percent of the Davis workforce, about 12,610 workers, resides from outside Davis, while the remaining 24 percent both live and work in Davis, accounting for 4,018 residents. Additionally, 84 percent of Davis residents, or approximately 21,259 people, are employed outside the city. This mismatch may be due to local job types or wage rates not aligned with residents' skills or income needs.

Due to the mismatch, Davis experiences a high level of commute trips in and out of Davis. The commute pattern directly impacts peak-period traffic on regional corridors like I-80 and requires longer travel distances for work trips that contribute to higher vehicle miles traveled (VMT) per capita than the regional average.

Traffic Flow Pattern and Peak Hour

I-80, the major east–west freeway through Davis, serves as the primary regional corridor connecting the city to the rest of the region. Traffic on I-80 through Davis experiences pronounced AM and PM peaks due to heavy commute volumes. To better understand peak commute periods, traffic flow on I-80 was analyzed within the city limits, from Mace Boulevard to Richards Boulevard. However, bottlenecks along I-80 may also occur upstream or downstream, outside the Davis city limits.

Figure 1 illustrates the general-purpose mainline traffic flow patterns by hour of day on I-80 within Davis city limits from Mace Boulevard to Richards Boulevard, and **Figure 2** illustrates the average travel speed by hour of day on I-80 mainline within the same limits.

The eastbound (EB) traffic volume on I-80 within the city limits shows similar patterns in 2019 and 2024. The eastbound AM peak traffic hour is 7:00-8:00 AM for both 2019 and 2024, while the PM peak traffic hour shifted from 2:00-3:00 PM to 3:00-4:00 PM. The eastbound peak traffic on I-80 segments in Davis has a slight decrease in 2024, compared to 2019, which indicates the potential impact of telework trends.

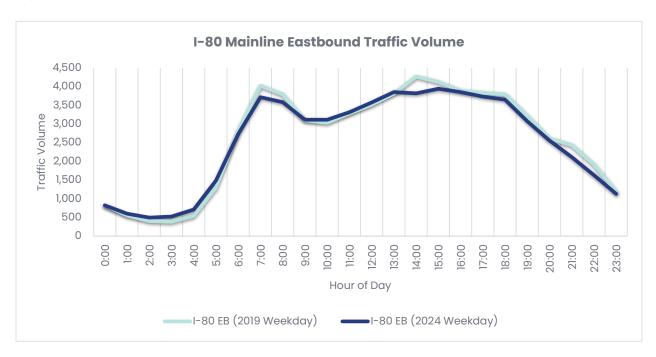
The westbound (WB) traffic volume on I-80 within the city limits shows lower traffic volumes during daylight hours in 2024, which indicates the decreased traffic demands (possibly due to less commuting) heading west towards the Bay Area. The westbound AM and PM peak hours of 7:00-8:00 AM and 4:00-5:00 PM stay consistent in 2019 and 2024.

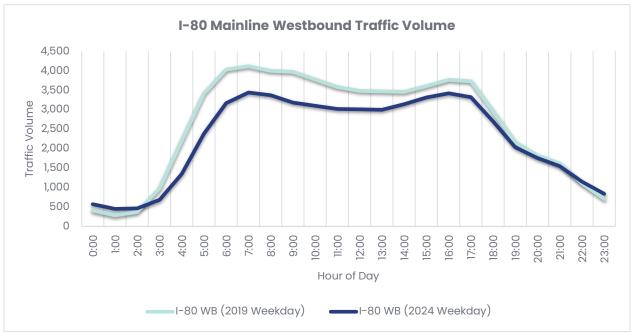
The traffic volume changes between 2019 and 2024 have produced a slight increase in EB travel speeds while the WB speeds remained similar. A substantial reduction in EB travel speeds occurs routinely between 2:00-6:00 PM, with speeds dropping below 20 mph. The resulting travel delays on I-80 cause some traffic to divert through Davis streets, which was

-

¹¹ According to 2022 Longitudinal Employer-Household Dynamics (LEHD)

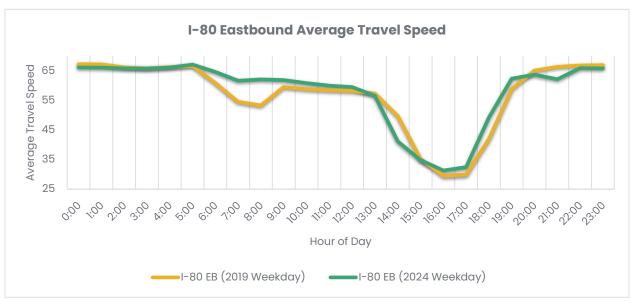
part of the reason Caltrans has proposed adding a new high occupancy toll (HOT) lane between Davis and West Sacramento. The proposed improvements are expected to reduce dangerous cut-through traffic on local streets and rural roads by travelers seeking to avoid congestion on I-80. A traffic study of the Mace Boulevard corridor in Davis revealed that during the PM peak period, up to 10 percent of traffic diverts off I-80, using local roads in Davis to reach Tremont Road to the south and Covell Boulevard and Road 29 to the north.

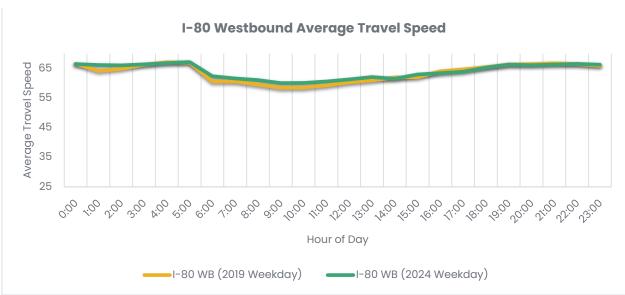

The WB direction does not suffer the same speed drops because a bottleneck on WB I-80 exists in West Sacramento at the merge between I-80 and US-50. This bottleneck produces stable flows beyond it. When Caltrans completes HOT lane expansion above, the WB direction may experience a new bottleneck at the termination of this new lane just west of Davis. This could produce queuing and slow speeds on WB I-80 in the future.


The slow speeds on I-80 are the result of how travel demand is managed. Currently, drivers are willing to tolerate the slow speeds given the freedom to travel any time of day. This produces a 'tragedy of the commons' effect where too much demand competes for the limited free public roadway space. This public space is not managed for efficiency or reliability despite Caltrans and Federal Highway Administration (FHWA) policies promoting these outcomes. Instead, the breakdown of traffic flow and speeds is accepted given driver preferences for large vehicle sizes, high levels of privacy and travel freedom, and avoidance of tolls. As a result, drivers experience slow speeds, or a 'time toll'.

A recent study¹² of the I-80 corridor through Sacramento highlighted major inefficiencies in travel conditions, revealing significant underutilization of vehicle seat capacity. For the City of Davis, this has direct relevance: continued regional growth and congestion on I-80 may increase traffic spillover onto Davis's local street network.

¹² Fehr & Peers, 2020. Additional information can be found at https://www.fehrandpeers.com/blog/congestion-and-seat-utilization/


Figure 1. I-80 Mainline Traffic Flow in April 2019 and 2024



Sources: PeMS data of I-80 in the City of Davis limits from April 1 to April 30 in 2019 and 2024 on weekdays (Tuesday to Thursday).

Figure 2. I-80 Mainline Average Travel Speed in April 2019 and 2024

Sources: PeMS data of I-80 in the City of Davis limits from April 1 to April 30 in 2019 and 2024 on weekdays (Tuesday to Thursday).

Mode Choices

The average commute time for workers living in Davis is approximately 19 to 21 minutes.¹³ The average commute time for Yolo County is 20 minutes, and the average for Sacramento County is 23 minutes.¹⁴ The average commute distance of Davis commuters is 14 miles, shorter than the Yolo County average of 21 miles, similar to the Sacramento County average of 14 miles, and shorter than the Sacramento Area Council of Governments (SACOG) regional average of 15 miles.¹⁵

More than half of Davis commuters travel by car, predominantly driving alone (52 percent). This percentage is much lower than other cities around Davis (as shown in **Figure 3**). Davis stands out for its notably high proportion of commuters who use active transportation modes, such as biking (12 percent) and walking (3 percent). Additionally, ACS estimates indicate that Davis has a high percentage (23 percent) of employees working from home.



Figure 3. Commute Mode Choice Comparison

Sources: ACS 2023 5-Year Estimates.

¹³ According to the Replica Spring 2024 data and the ACS 2023 5-year estimates

¹⁴ According to ACS 2023 5-year estimates

¹⁵ According to 2024 Spring Season Replica data on average weekdays

Figure 4 below compares citywide commuting mode choice between 2019 and 2023 5-year estimates. In this comparison and following discussion, work-from-home trips are excluded from the total commute trips to better understand mode choices among those who commute to a physical workplace. Compared to the 2019 commute mode choice percentages, Davis has increases in commuters going to work by driving alone and other means (taxicab, motorcycle, etc.). Davis has decreased mode share percentages in other main transportation means, such as carpooling, public transportation, and biking.

Figure 4. Commute Mode Choice Trends (Excluding Work-from-Home)

CITYWIDE COMMUTING TRENDS 2019 2023 **Drive Alone** 60% 67% 5 % 7% Carpool **Public** 8 % 6 % Transportation **Bike** 19% 16% 4 % 4 % 2 % 1 %

Notes:

As of August 2025, the most recent available ACS 5-year estimates are for 2023. However, recent 2025 local data in Davis indicate an increase in active mode use. Transit ridership on Unitrans has nearly returned to 2019 levels, and bike trips have shown steady growth over the past three years based on the UC Davis Campus Travel Survey.

Sources: ACS 2019 and 2023 5-Year Estimates; Fehr & Peers, 2025.

Daily Trip Origin-Destination (O-D) Travel Patterns

As for daily trip origin-destination (O-D) patterns, 58 percent of all daily trips generated by activities in Davis start and end in the city. 15 percent of trips involved Davis have either trip starts or ends at UC Davis. Taken together, these account for 73 percent of total person trips. The remaining 27 percent of total person trips are trips between Davis and locations elsewhere, such as City of Woodland (7 percent).¹⁶

Figure 5 shows the Davis top three origins and destinations of weekday trips by different modes. This indicates that City of Davis is the primarily origin and destination for all major transportation modes, and UC Davis is the second popular origin and destination for all major transportation modes. The City of Sacramento stands out as a popular origin and destination of Davis trips taking public transportation.

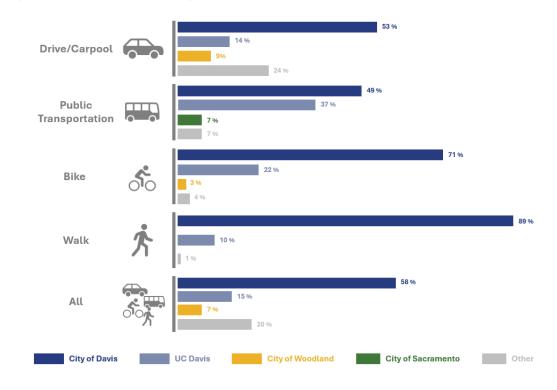


Figure 5. Davis Top Trip Origin and Destination Shares by Modes

Source: Replica Spring 2024 Weekday; Fehr & Peers, 2025.

¹⁶ According to 2024 Spring Season Replica data on average weekdays

Vehicle Miles Traveled

Vehicle miles traveled (VMT) is a key metric used in planning, policy, and environmental impact analysis to measure how much people are driving. VMT has been used since the 1980s as an input to air pollution analysis and was introduced in the 1990s for greenhouse gas (GHG) analysis. VMT as a transportation impact metric for CEQA was introduced through Senate Bill 743 (SB 743) in 2013.¹⁷ Part of the intent for using VMT in CEQA transportation impact analysis was to support state goals to reduce GHGs, increase infill development, and promote public heath through greater active transportation. Reducing VMT can also contribute to reducing the number and severity of traffic collisions, lower infrastructure construction and maintenance costs, improved air quality, and more efficient land use patterns.

VMT Lexicon

A variety of VMT metrics may be used for planning or impact analysis. An important aspect of selecting appropriate VMT metrics is understanding that impact analysis will require establishing a VMT threshold for determining significant impacts. As such, the methodology used to establish the threshold must also be used to perform the impact analysis for future projects.

Metric	Definition	Visualization

Total VMT Generated by a Study Area

All vehicle-trips are traced to the zone or zones of study. This includes internal to internal (II), internal to external (IX), and external to internal (XI) trips. May use final assignment origin destination (OD) trip tables or production (P) and attraction (A) estimates multiplied by distance skims. When the model has multiple assignment periods, OD trip tables and congested skims from each period should be used.

¹⁷ More information about SB 743 can be found at https://lci.ca.gov/ceqa/sb-743/

Metric Definition		Visualization
Residential VMT per Resident (Capita)	All automobile (i.e., passenger cars and light-duty trucks) vehicle-trips are traced back to the residence of the trip-maker, even non-home-based (NHB) trips.	
Work VMT per employee (Job)	All automobile vehicle-trips made by employed persons are traced back to the workplace of the trip-maker, even trips that aren't part of the work tour (i.e., all trips from home to work location and the return to home).	

Source: Fehr & Peers, https://www.fehrandpeers.com/wp-content/uploads/2025/04/VMT-Lexicon.pdf

VMT of Davis

As the lead Metropolitan Planning Organization (MPO) for the Sacramento region, SACOG covers six counties: Yolo, Sutter, Yuba, Sacramento, Placer, and El Dorado. SACOG updates the Metropolitan Transportation Plan/Sustainable Communities Strategy (MTP/SCS) every four years to align regional transportation and land use planning with state greenhouse gas (GHG) reduction goals. As part of this effort, SACOG develops and maintains the regional travel demand model SACSIM to support VMT estimation and GHG emissions projections.

The Draft 2025 Blueprint MTP/SCS is currently available for public comment; however, the 2025 MTP/SCS has not yet been adopted, nor has the latest SACSIM23 model been officially released. Therefore, to estimate current VMT metrics for Davis, the SACSIM19¹⁸ travel demand model developed by SACOG for the 2020 MTP/SCS was used. The 2025 MTP/SCS is anticipated to be adopted by the end of 2025, at which point the latest SACSIM23 model is also expected to become available. It is important to note that SACSIM23 uses 2019 as its base year, representing pre-COVID conditions. Therefore, even if SACSIM23 is used for future VMT updates in Davis, it

¹⁸ SACSIM19 is the regional travel demand model developed by SACOG. SACOG is still developing SACSIM23 as part of its 2025 MTP/SCS effort, so SACSIM19 is the most recent available version of the model.

will be important to evaluate and potentially modify the model to reflect post-COVID travel behavior to ensure consistency with current conditions and for future planning.

SACSIM19 was calibrated and validated to a 2016 base year based on household travel surveys, transit boarding data, on-board transit surveys, traffic count data, and VMT estimates from annual Highway Performance Monitoring Systems (HPMS) data¹⁹ to verify that the SACSIM model reasonably replicated observed travel behavior. While the model boundaries match those of the six-county SACOG region, part of the model design includes accounting for vehicle trip lengths outside of the SACOG region based on 2019 Replica data.²⁰

The preferred VMT metrics presented above are further defined in **Figure 6**. The figure shows a typical household daily tour chain, which contains three individual tours (1-2-5, 3-4, and 6-7). Residential VMT includes all three individual tours. Employee VMT represents all tours that are related to work, which would include two tours 1-2-5, and 6-7.

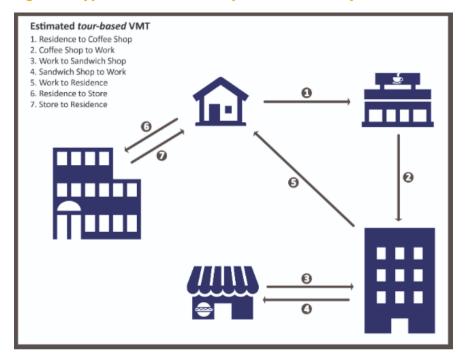


Figure 6. Typical Household Daily Travel in Activity-Based Travel Model

Sources: SACOG SB743. https://sb743-sacog.opendata.arcgis.com/

¹⁹ The HPMS accounts for VMT on freeways, expressways, arterials, collectors, and local streets. More details can be found in Appendix A.

²⁰ SACOG Outside the Region VMT Estimation, https://www.sacog.org/sites/main/files/fileattachments/draft vmt ixxi documentation 0.pdf?1622243676

Table 1 presents the Residential VMT per capita, Employee VMT per employee and total VMT generated by Davis. For the per capita metrics, City of Davis, Yolo County and SACOG region estimates are included for comparison.

Table 1 VMT Analysis Results from SACSIM19 Baseline (Year 2016)

	City of Davis	Yolo County	SACOG Region			
Residential VMT per Capita ¹	30.11	38.16	21.59			
Work VMT per Employee ¹	32.85	47.18	19.55			
Total VMT generated by Davis ²	1,158,350	NA	NA			
Notes: 1. Includes trips originating or destined outside the SACOG region.						

Notes: 1. Includes trips originating or destined outside the SACOG region.

2. Includes all vehicles trips with at least one trip end in Davis, rounded to nearest 10.

Source: SACOG 2020 MTP/SCS SACSIM19 Mode 2016 Base Year Condition; Fehr & Peers, 2025.

UC Davis Trips

With around 37,500 students and 16,000 of faculties and staff²¹, UC Davis is one of the largest trip generators in Yolo County and the Sacramento region. As discussed earlier, UC Davis is one of the most frequent origins and destinations of Davis trips. UC Davis also has one of the highest rates of non-motorized travel in the U.S., contributing to significant volumes of bicycle and pedestrian traffic, particularly between the campus and the City of Davis.

The UC Davis main campus connects to the City of Davis directly through the roadway network, mainly including Russell Boulevard, La Rue Road/Anderson Road, A Street, First Street, etc. The main campus is also connected to the bike paths in the City of Davis on Sycamore Lane, Anderson Road, Oak Avenue, 5th Street, 3rd Street, and 1st Street.

Trips from UC Davis to the City of Davis are around 35,500 on a daily average.²² The average travel time of these trips is around 8 minutes, and the average travel distance of these trips is around 2 miles. The daily trips from the City of Davis to UC Davis are around 34,000. The average travel time of these trips is around 10 minutes, and the average travel distance of these trips is around 2.5 miles.

²¹ According to City of Davis Local Road Safety Plan, 2023

²² According to 2024 Spring Season Replica data on average weekdays

As discussed in the results of the 2023-2024 UC Davis Campus Travel Survey, ²³ there is notable usage of active modes beyond conventional commuting. Around 20% of respondents reported walking, skating, or using e-scooters at least once during the week, despite a lower daily mode share. Carpooling and getting rides were also commonly used occasionally, with approximately 11% of respondents engaging in this practice at least once weekly, exceeding the 4% daily average. Although daily mode shares indicate a consistent primary mode choice, many individuals utilize various transportation modes across different days within the week. For instance, approximately 48% of individuals biked as their primary transportation at least once during the surveyed week, significantly higher than the 37% who biked daily. Similarly, while daily bus ridership averaged about 18%, roughly 27% of respondents reported using the bus at least once during the week.

²³ Results of the 2023-2024 Campus Travel Survey, 2024. This survey collected data from people affiliated with UC Davis about travel to campus.

https://itspubs.ucdavis.edu/publication_detail.php?id=4520

ROADWAY NETWORK

Roadway Functional Classifications

The City of Davis classifies its roadway system into four primary functional categories: major arterials, minor arterials, collector streets, and local streets. **Table 2** lists key roadways in Davis under each category. **Figure 7**, **Figure 8**, and **Figure 9** present the roadway network in Davis by functional classification, number of lanes, and speed limits.

Table 2 Roadways in the Davis

Roadway Functional Classification	Description	Representative Roadways
Major Arterials	Major arterials serve as primary corridors designed to accommodate higher volumes of traffic and facilitate regional and intercity travel. They typically feature four lanes, often separated by medians, and provide limited direct access to adjacent properties. Major arterials in Davis are strategically positioned to minimize disruptions in residential neighborhoods and avoid proximity to schools.	Covell Boulevard Pole Line Road Mace Boulevard Russell Boulevard Fifth Street Richards Boulevard Cowell Boulevard
Minor Arterials	Minor arterials also support substantial traffic volumes but provide more direct access to adjacent land uses than major arterials. These streets usually have two lanes and may include medians where appropriate. Their primary function is to connect distinct neighborhoods within the city while limiting through traffic in residential areas.	Alhambra Drive Chiles Road Research Park Drive F Street Arlington Boulevard Second Street Eighth Street Shasta Drive Sycamore Lane
Collector Streets	Collector streets are designed to gather and distribute traffic between local residential streets and arterial roadways. Typically comprising two	

Roadway Functional Classification	Functional Description	
	lanes, collectors penetrate neighborhoods to provide connectivity and often include designated bicycle lanes to accommodate multimodal travel.	
Local Streets	Local streets primarily offer direct access to residential properties and are not intended for significant through traffic. These streets constitute the largest portion of the city's network. They generally consist of two lanes with low-speed limits and include features such as cul-de-sacs to minimize external traffic, enhancing neighborhood safety and reducing congestion.	

Figure 7. Roadway Functional Classification

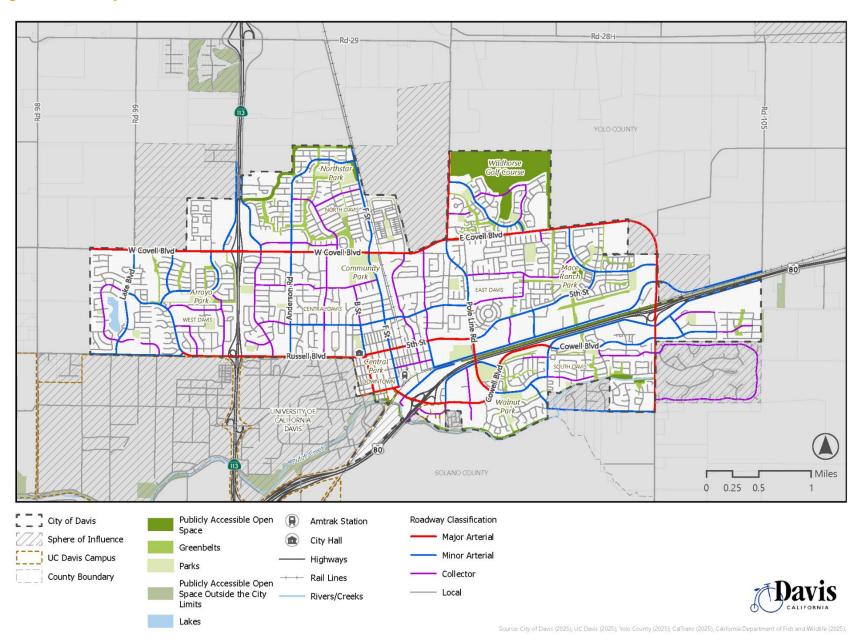


Figure 8. Number of Lanes

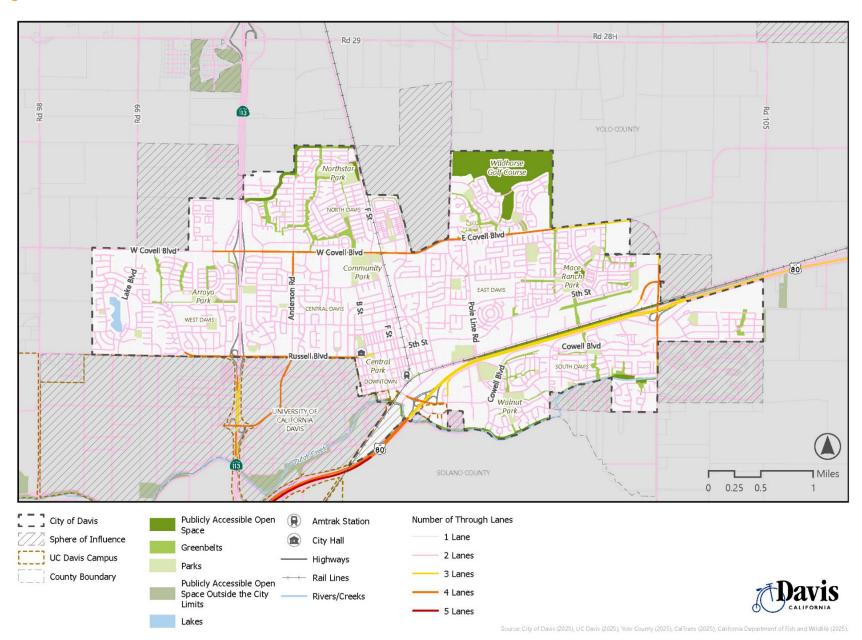
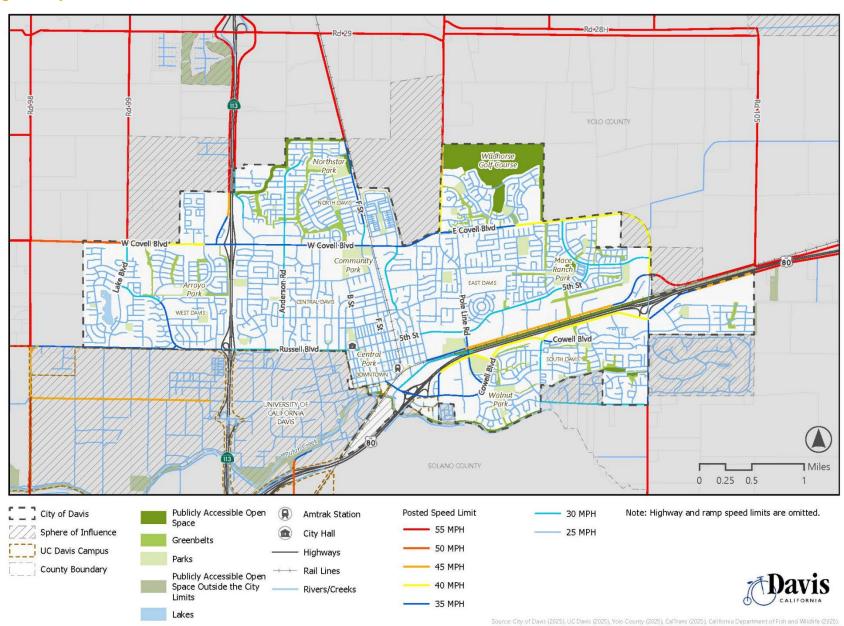



Figure 9. Speed Limits

Traffic Operations

The purpose of evaluating traffic operations for the General Plan Mobility Element is to provide information on one of several metrics to consider in deciding whether to modify the number of through vehicle travel lanes or functional classification of roads in the street network. The evaluation of current conditions is based on vehicle traffic counts on road segments throughout the city. For portions of some road segments, as discussed in more detail in the following section, segments with heavy cross-street traffic will operate at more congested conditions than indicated by road segment volumes. A discussion of these road segments is provided.

Methodology

To evaluate the current operational performance of Davis's roadway system, Level of Service (LOS) is used. LOS is a qualitative description of traffic flow from the perspective of drivers based on factors such as speed, travel time, delay, freedom to maneuver, volume, and capacity, which is used to evaluate the comfort and convenience of driving.

LOS is graded like a report card (A-F). LOS A represents low delays for drivers but doesn't describe the experience of bicyclists or pedestrians using or crossing the same roadway. Further, LOS A conditions would tend to represent a very low level of roadway capacity utilization. From an economic perspective, roadways and intersections are public infrastructure that should be well utilized throughout the day by all users.

Conversely, the boundary between LOS E/F signifies the effective limit on peak vehicle throughput. A roadway or intersection operating near LOS E/F is close to its effective capacity. To economists, this is a desirable outcome for public infrastructure. However, if demand is much higher than effective capacity, it can result in much lower speeds that frustrate drivers and create conditions where they are delayed for multiple cycles at traffic signals or experience unreliable travel times.

For General Plan purposes, LOS is determined by comparing existing traffic volumes on selected roadway segments with AM peak hour, and PM peak hour LOS thresholds. It appears that the current General Plan uses the volume-to-capacity (V/C) ratio to identify LOS conditions for roadway segments, and that no specific LOS threshold table has been developed for segment-level analysis. This methodology can be challenging to apply and may lead to inconsistent results, as the capacity for each roadway segment must be individually evaluated or estimated using a formula that accounts for factors such as functional classification, number of lanes, speed limits, and other physical characteristics.

To align with recommended practices for analyzing LOS conditions on roadway segments, the peak hour LOS thresholds were developed using the latest Highway Capacity Manual

(HCM) 7th Edition (Transportation Research Board, 2022), with additional consideration of Davis's roadway functional classifications.

The LOS thresholds used in this analysis, as shown in **Table 3**, are intended for planning-level evaluation to assess the need for changing functional classifications and the number of lanes to achieve desired operating conditions. To streamline the assessment, the LOS threshold table has been simplified to correspond with the functional classifications outlined in Table 3.

Table 3 LOS Thresholds

	Lanes	Peak Hour Volume Threshold				
Roadway Functional Classification		A	В	С	D	E
Collector Streets	2	-	-	1,000	1,240	1,380
Collector Streets	4	-	-	2,000	2,420	2,660
Minor Arterials	2	-	-	1,110	1,350	1,490
MITIOT AITERIAIS	4	-	-	2,220	2,640	2,880
	2	-	_	1,220	1,460	1,600
Major Arterials	4	-	-	2,440	2,860	3,100
	6	-	-	3,660	4,260	4,600
	4	-	4,550	6,000	7,400	7,710
Freeway	6	_	6,490	8,910	11,050	11,560
	8	_	8,580	11,820	14,710	15,440

Source: HCM 7th Edition, 2022; Fehr & Peers, 2025.

Existing Traffic Conditions

A detailed analysis was conducted for several roadway segments and freeway facilities under existing conditions. The study segments include transportation facilities within the city, as well as within the Planning Area outside of the current city limits. These roadway segments were identified based on the current General Plan and input from City staff.

For the local roadway study segments, traffic counts collected through 2023 to 2025 were used to assess current operational conditions. Fifty-five segments had 48-hour roadway counts collected in May 2025, and the average of those counts was used in the traffic operations analysis. For the remaining segments, other data sources were used, including 72-

hour roadway counts from October 2024, and peak period counts from 2023 and 2024, which were extrapolated to estimate average daily volumes.

For the freeway study segments, PeMS data from April 2025 was downloaded from the Caltrans website, and an average of weekday PeMS counts was used to assess operational conditions. For segments without available PeMS data, Caltrans 2023 Annual Average Daily Traffic (AADT) counts were obtained from the Caltrans Traffic Census Program.

The current General Plan Transportation Element identifies LOS E as the minimum acceptable LOS for the majority of locations within the City. LOS F is acceptable for other areas such as Downtown Davis and the Richards Boulevard corridor.

The existing operational conditions of the study segments, including local roadways and freeway segments, are summarized in **Appendix B: LOS Performance Measurement Results.** Almost all road segments currently operate at Level of Service D or better during the weekday AM or PM peak hours. The primary exception is Pole Line Road between 5th Street and Cowell Boulevard, which operates at LOS E during the PM peak and LOS D during the AM peak, reflecting constrained vehicle throughput due to congestion. Furthermore, I-80 east of County Road 32A/Chiles Road and west of State Route 113 operates at LOS F, consistent with observed peak-hour delays along this stretch through the City of Davis.

In addition to the roadways evaluated using the segment LOS threshold table, several corridors in the City of Davis experience heavy cross-street traffic, resulting in congestion levels greater than those suggested by segment volumes alone. The following summarizes these locations on the City's street network, drawing on existing LOS calculations from prior traffic studies.

- Intersections along Richard Boulevard²⁴ at and adjacent to the I-80/Richards
 Boulevard interchange operate at LOS E or F conditions including Richards
 Boulevard/I-80 Eastbound Ramps, Richards Boulevard/I-80 Westbound Ramps, and
 Richards Boulevard/Olive Drive.
- Intersections along Mace Boulevard and Chiles Road²⁵ at the I-80/Mace Boulevard interchange operate at LOS E or F conditions including Mace Boulevard/I-80 WB Ramps, Mace Boulevard/Chiles Road, and Chiles Road/I-80 EB Ramp.

Figure 10 shows the existing daily traffic volumes on the study segments. **Figure 11** presents the PM peak hour LOS results for all segments except local streets and the portions of Richards Boulevard, Mace Boulevard, and Chiles Road discussed above.

²⁴ Interstate 80/Richards Boulevard Interchange Improvements Project Final Initial Study/Mitigated Negative Declaration, ESA, Prepared for City of Davis, April 2011.

²⁵ Village Farms Davis Local Transportation Analysis, Fehr & Peers, January 2025.

Figure 10. Average Daily Traffic Volumes

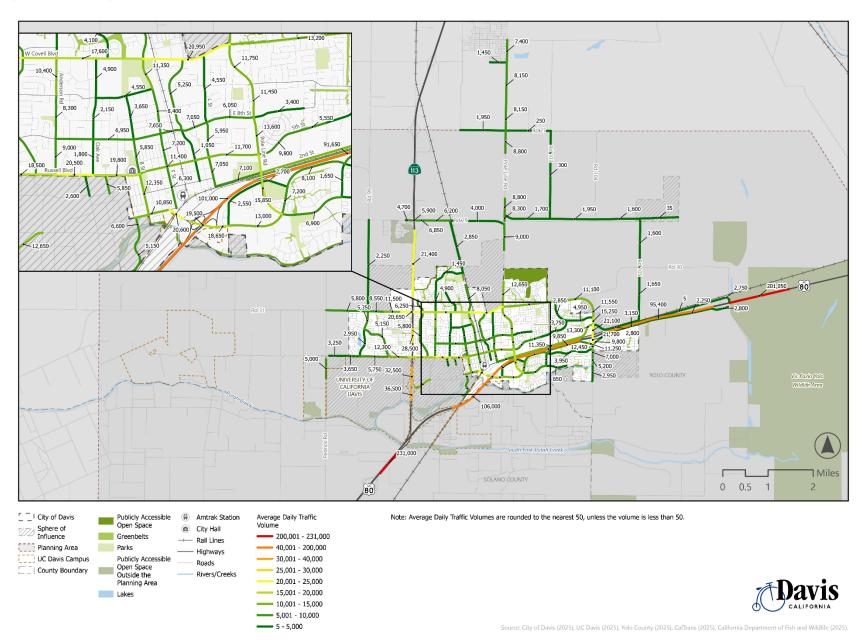
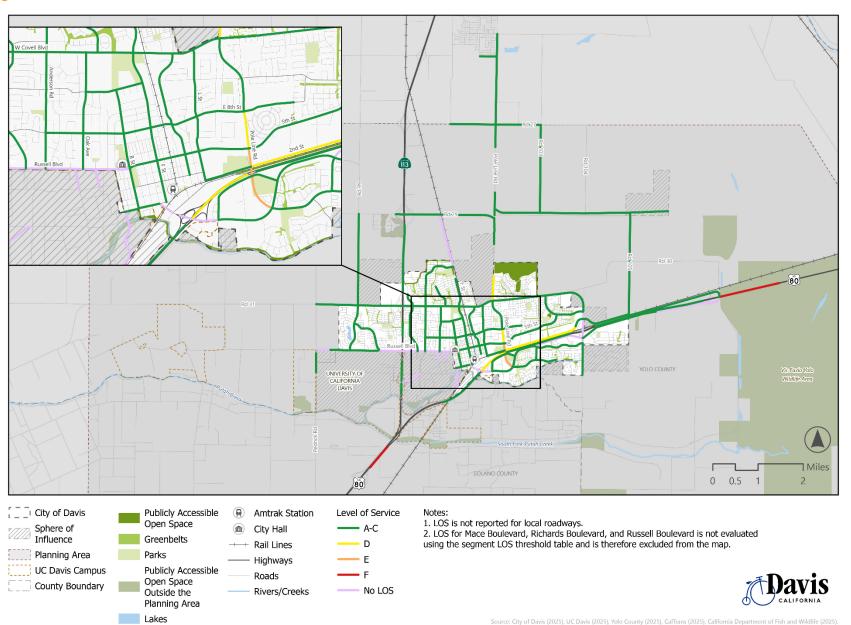
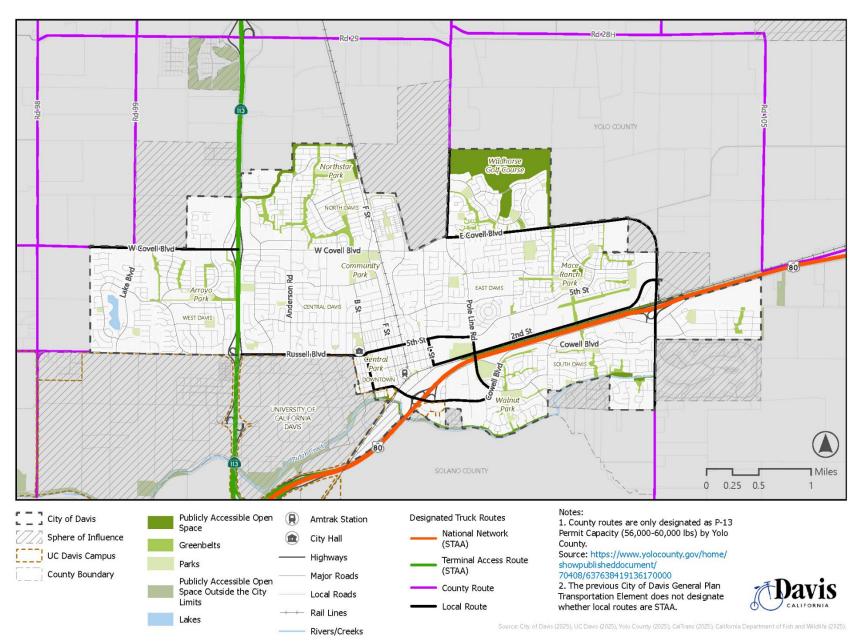



Figure 11. PM Peak Hour LOS

Truck Routes

Davis has established a network of designated truck routes to manage the movement of heavy vehicles—specifically those exceeding a gross vehicle weight of 10,000 pounds—throughout the city. These routes are intended to facilitate efficient commercial transportation while minimizing impacts on residential areas and enhancing overall traffic safety.

Source: Google Maps Street View, May 2024


According to the Davis Municipal Code (§22.04.120), the streets that are officially designated as truck routes are listed below and shown in **Figure 12**. These routes are clearly marked with appropriate signage to guide truck drivers along the approved paths.

- Covell Boulevard: West City Limits to State Route 113
- B Street: First Street to Fifth Street
- L Street: Second Street to Fifth Street
- Russell Boulevard: State Route 113 to B Street
- Richards Boulevard
- Second Street L Street to Mace Boulevard
- Cowell Boulevard Pole Line Road to Richards Boulevard
- First Street B Street to Richards Boulevard
- Fifth Street L Street to Pole Line Road
- Fifth Street B Street to L Street
- Pole Line Road Fifth Street to Cowell Boulevard
- Covell Boulevard Pole Line Road to Mace Boulevard

- Mace Boulevard Covell Boulevard to South City Limits
- Pole Line Road Covell Boulevard to North City Limits

In accordance with the California Vehicle Code, trucks may travel on non-designated routes when necessary to reach a destination—such as for deliveries or pickups—if no reasonable alternative using designated truck routes exists. In such cases, drivers are required to use the shortest and most direct path to and from the nearest designated truck route.

Figure 12. Truck Routes

TRANSIT SERVICES

Transit Network

The public transit network in Davis consists of services offered by four providers, including Unitrans, Davis Community Transit, Yolobus, and Amtrak. **Figure 13** presents the transit network serving Davis. Unitrans, Davis Community Transit and Yolobus are all updating the Short Range Transit Plans, and the proposed routes and operating hours might change after that.

Unitrans

Unitrans serves as the primary public bus system within Davis, operating 19 fixed routes that connect neighborhoods, commercial areas, and the UC Davis campus. Eleven routes use Memorial Union as their main bus terminal, seven routes use the Silo bus terminal, and one route (T Line) primarily serves Davis High and Junior High School. The V Line is unique with trip variants that specifically serve apartment complexes in West Village.

Driven by UC Davis students, the fleet includes both modern buses and iconic double-decker vehicles. As of FY 2024, with an annual ridership around 3.5 million, Unitrans is approaching its pre-pandemic ridership level of 3.7 million. ²⁶ Unitrans plays a vital role in the city's transportation network. It operates five different service schedules throughout the year. Regular service runs on weekdays during the academic year, with extended hours at night during finals service. During regular service, 16 routes run Monday through Thursday from 6:30 AM to 10 PM, and on Friday until 8 PM, with 30-minute headways. Finals service extends operating hours until 11 PM. For summer, break, and weekend service periods, service levels are adjusted based on lower ridership. Weekend service is available on select routes, including lines G, K, M, P, Q, U, and O, which primarily operate from 9AM to 6PM.

²⁶ According to City of Davis Short Range Transit Plan Existing Conditions Report – Draft, 2024

Source: https://www.ucdavis.edu/news/uc-davis-among-top-10-public-universities

Davis Community Transit (DCT)

DCT provides paratransit services for individuals who qualify under the Americans with Disabilities Act (ADA). Paratransit is a type of public transit service that provides flexible, door-to-door rides for individuals who are unable to use fixed-route transit due to disability, age, or other mobility limitations. Operating within the city limits and up to three-quarters of a mile beyond active fixed-route bus lines, DCT offers trips on a reservation basis. Fares vary based on scheduling and service type. Services are available Monday through Friday, with fares ranging from \$3.00 to \$6.00 per trip, depending on scheduling and service type.

Source: https://www.youtube.com/watch?v=nND75zXRj0k

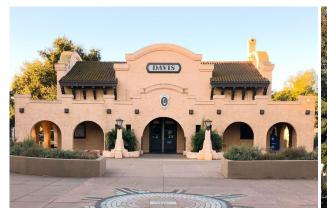
Yolobus

Yolobus, operated by the Yolo County Transportation District (YoloTD), connects Davis to neighboring communities such as Woodland, West Sacramento, and downtown Sacramento. The service includes both fixed routes and on-demand options, facilitating broader access to neighboring communities. Key routes serving Davis include:

- 42A/42B: Intercity loops connecting Davis with Woodland, Sacramento International Airport, Downtown Sacramento, and West Sacramento.
- 43/43R: Express routes between Davis and Downtown Sacramento, with 43R offering reverse commute options.
- 44: South Davis to Sacramento Express.
- 230: West Davis to Sacramento Express.
- 138: Causeway Connection, a zero-emission bus service between Davis and the UC Davis Medical Center in Sacramento.

Yolobus operates daily, with schedules varying by route. All buses are equipped with bike racks and are wheelchair accessible.

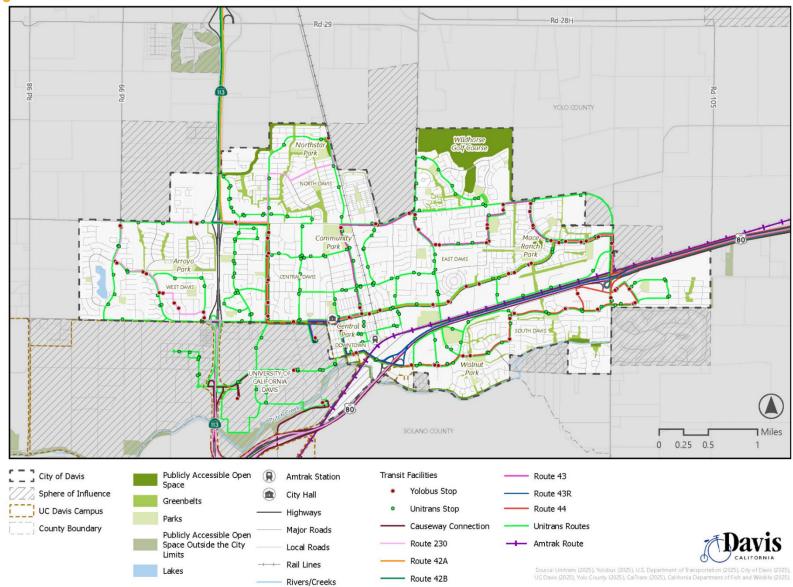
YoloTD also provides an on-demand microtransit service called BeeLine, which offers flexible and affordable transportation within several zones in Yolo County. While BeeLine does not operate within the City of Davis for local pick-up and drop-off, it allows riders from nearby communities—such as Winters and Vacaville—to travel into Davis. Designated drop-off locations in Davis include the UC Davis Silo Bus Terminal, Memorial Union Bus Terminal, Sutter Davis Hospital, and stops along Anderson Road and Covell Boulevard.



Source: https://yolobus.com/

Amtrak

The Davis Train Station, located at 840 Second Street, provides access to passenger rail services provided by the Capitol Corridor, Coast Starlight, and California Zephyr lines. This station serves as a key hub for intercity travel, linking Davis to major destinations across California and beyond nationwide. The station is served by three major Amtrak routes: the Capitol Corridor, which offers frequent service between Auburn and San Jose; the California Zephyr, providing daily service between Emeryville and Chicago; and the Coast Starlight, connecting Los Angeles and Seattle.


The station operates daily from 6:00 a.m. to 4:00 p.m., offering ticketing services, passenger assistance, and checked baggage during these hours. Parking is available 24 hours a day. The station is accessible and is undergoing upgrades to improve compliance with the ADA. Public transit connections include Unitrans and Yolobus services, facilitating easy access to the University of California, Davis, and other local destinations. Unitrans provides direct access to and from the station. In addition, the station offers bike parking and secure bike lockers, supporting multimodal travel options for passengers.

Source: https://www.cityofdavis.org/city-hall/improvement-projects/amtrak-station
https://www.flickr.com/photos/amtrakdavis22/52507270989

Figure 13. Transit Facilities

An updated map will be available in Spring 2026 as part of the SRTP.

Transit Ridership and Operations

Unitrans

This analysis evaluated Unitrans ridership data for Fiscal Year (FY) 2023-2024, spanning from July 1, 2023, to June 30, 2024. During this period, total ridership across all Unitrans routes was 3,477,684. As illustrated in **Figure 14**, monthly ridership closely corresponds to the UC Davis academic calendar, with lower ridership levels occurring from June through September, as well as in December.

According to Unitrans²⁷, Unitrans bus schedules change during the year according to the UC Davis calendar, since over 90% of the riders are UC Davis students.

Figure 14. Monthly Total Transit Boardings of Unitrans Routes

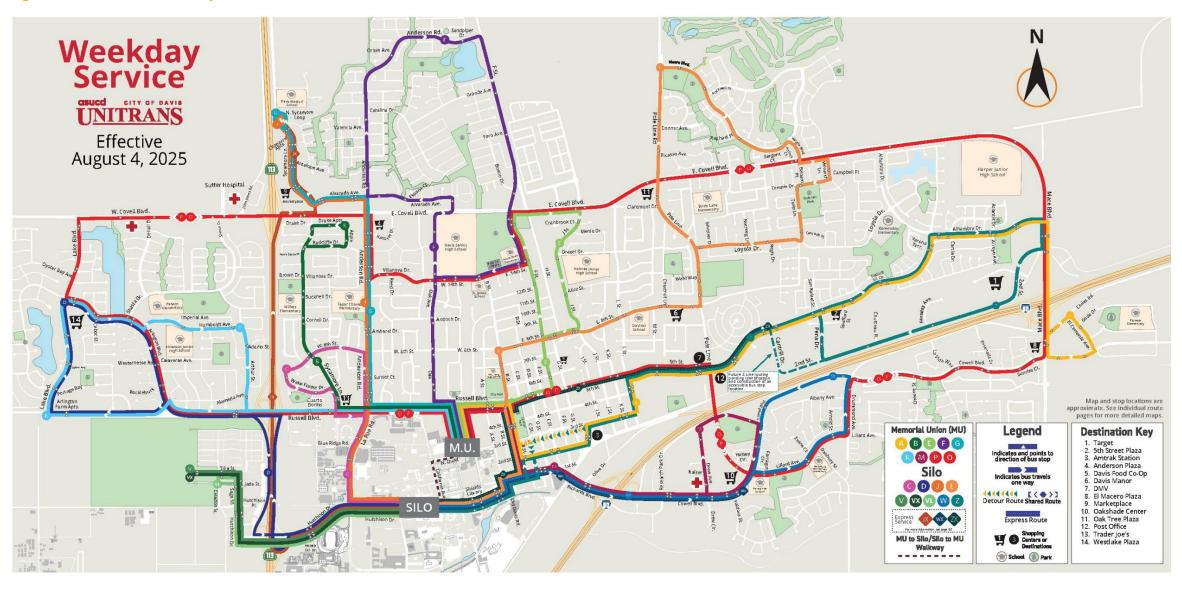
Notes

According to UC Davis Master Academic Calendar for FY 2023-2024, Fall 2023 quarter began on September 25, 2023, and ended on December 17, 2023. Winter 2024 quarter began on January 5, 2024, and ended on March 22, 2024. Spring 2024 quarter began on March 28, 2024, and ended on June 13, 2024.

Figure 15 shows annual ridership by hour of the day. As shown, Unitrans transit ridership remains steady from 9:00 AM to 4:00 PM, indicating that the majority of riders are students who do not follow the typical peak commute pattern.

²⁷ Why do the bus schedules change during the year depending on the UC Davis calendar? https://unitrans.ucdavis.edu/frequently-asked-questions-faq

Figure 15. Annual Transit Ridership of Unitrans Routes by Hour of Day


According to the Unitrans Quarterly Narrative Report-January to March 2025, ridership shows an increase between July 2024 and March 2025 compared to the monthly figures from FY 2023–2024. The total ridership increased by 12% compared between July through March in FY 2023–2024 and 2024–2025. This upward trend suggests that Unitrans ridership is continuing to recover and may be approaching pre-COVID levels.

To better understand how this increased ridership affects service quality, it's important to consider passenger capacity, the maximum number of passengers that a bus can safely accommodate, as determined by its design, layout, and regulatory standards. The single-floor Unitrans buses can accommodate a passenger load of 60 riders, and double-decker buses can hold up to 120.

Unitrans defines a trip considered as a crowded trip if the maximum of ridership exceeds the vehicle capacity (seated plus standing). During FY 2023-2024, all Unitrans routes except for T line (for junior high and high school students) experienced situation of over bus capacity. The C, O, U, V, W, and Z lines experienced the most crowding, where passenger load exceeded capacity, within the year – each having over 3 percent crowded trips. The detailed ridership and capacity comparisons are included in **Table C-1** of **Appendix C: Detailed Transit Ridership Information**. The detailed Unitrans route map is displayed in **Figure 16**.

Another key measure of Unitrans service reliability is on-time performance (OTP), which assesses how consistently buses adhere to their scheduled arrival and departure times. For the FY 2023-2024, 11 of 19 Unitrans lines met the 90% OTP goal. Line T (44%), Q (38%), and P (29%) have the highest percentage of total late trips compared to all other lines, which indicates lower reliability. The D, G, L, V, and Z had the best on-time performance, all having 5 percent or less of its trips arriving late to the terminals.

Figure 16. Unitrans Routes Map

DAVIS 2050 / General Plan Update

Yolobus

Based on data from YoloTD in 2019, 2023, and 2024, Davis experienced notable fluctuations in transit ridership, primarily due to the impacts of the pandemic and subsequent operational adjustments. **Figure 17** shows the monthly total ridership of all routes serving Davis in 2019, 2023, and 2024. **Table 4** summarizes the monthly average ridership and average trip ridership by routes serving Davis in 2019, 2023, and 2024. A detailed monthly ridership by routes summary table is included in **Table C-2** of **Appendix C: Detailed Transit Ridership Information**.

Route 42, operating daily throughout the year, remains the most utilized service despite fluctuations in ridership. In 2019, Route 42 averaged approximately 34,000 riders monthly, significantly higher than the roughly 24,000 average in 2023, demonstrating a clear decrease post-pandemic. 2024 indicates a gradual recovery, averaging approximately 25,000 riders monthly, though ridership remains below pre-pandemic levels.

Routes with fewer trips, such as Routes 43, 44, 230, and 232, saw notable ridership declines, and some were discontinued due to low patronage. Route 43 reduced from six trips per weekday in 2019 to just two trips by 2023 and 2024, with average trip ridership dropping from around 39 passengers per trip in 2019 to roughly 10 in 2023. Conversely, Route 138, introduced in 2023 with 14 weekday trips, experienced significant usage spikes from July through December 2023, highlighting its effectiveness in meeting travel needs. However, this ridership notably declined again in 2024, indicating variable demand possibly influenced by seasonal or academic schedules in Davis.

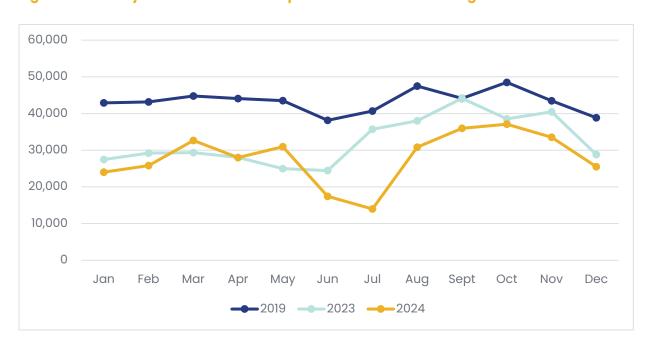


Figure 17. Monthly Total Transit Ridership of Yolobus Routes Serving Davis

Source: Yolobus; Fehr & Peers, 2025.

Table 4 Yolobus Ridership by Routes

Routes ¹	2019			2023			2024		
	Trips	Average Monthly Ridership	Average Trip Ridership	Aver Trips Mon Rider		Average Trip Ridership	Trips	Average Monthly Ridership	Average Trip Ridership
422	38 Trips Per Day, 365 days a year	34,040	29	54 Trips Per Day, 365 days a year	23,957	15	Same as 2023	24,830	15
43	6 Trips (3 morning & 3 evening M-F)	5,008	39	2 Trips (1 morning & 1 evening M-F)	421	10	Same as 2023	998	24
443	6 Trips (3 morning & 3 evening M-F)	1,703	13	Not Available					
230	6 Trips (3 morning & 3 evening M-F)	2,067	16	2 Trips (1 morning & 1 evening M-F) 191		5	Same as 2023	210	5
232	4 Trips (2 morning & 2 evening M-F)	497	6	Discontinued					
138 (Causeway Connection)	NA			14 trips M-F	7,858	27	Same as 2023	1,947	7

Notes: 1. Route 43R Express operates one morning and one afternoon trip between downtown Sacramento and UC Davis, Monday through Friday. Ridership data is not available.

Sources: Yolobus Ridership data for FY 2019, 2023, 2024; Fehr & Peers, 2025.

^{2.} Ridership for Route 42 reflects the combined total of Route 42A and Route 42B.

^{3.} Route 44 was discontinued in 2023 and 2024, so ridership data is not available for those years. However, the route resumed service in 2025.

Amtrak

Capitol Corridor monthly ridership data at the Davis Train Station for January 2022 to July 2024 was provided by Amtrak. Ridership data is defined as riders boarding and alighting at each station. Monthly ridership is shown for January 2022 to July 2024 below.

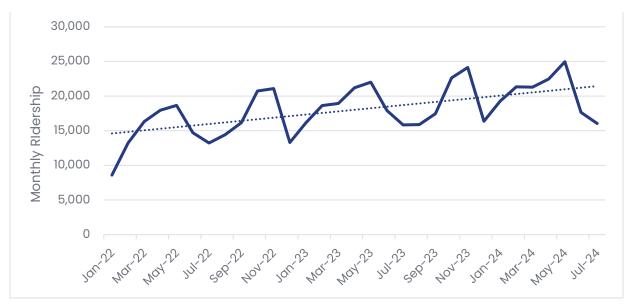


Figure 18. Capitol Corridor Davis Train Station Monthly Ridership

Source: Amtrak, 2024.

As shown in **Figure 18**, ridership regularly dips in the summer months and December corresponding to university breaks. Ridership is highest in May and November. Ridership is generally trending upwards since the return to in-person activities, however has not yet returned to pre-Pandemic levels. In 2019, average monthly ridership at the Davis Train Station was approximately 30,900 per month.²⁸ To provide a comparison to the highest peak of May 2024 (25,000 riders), May 2019 had 35,000 riders, roughly 30% higher. This indicates a major shift in usage of inter-city train travel.

During the FY 2023-2024, the annual ridership of Capitol Corridor Route is 1,032,632,²⁹ representing an increase of 12% compared to FY 2022-2023.

²⁸ According to data provided by Amtrak

²⁹ According to Amtrak FY24 Ridership. https://media.amtrak.com/wp-content/uploads/2023/11/FY24-Year-End-Ridership-Fact-Sheet.pdf

ACTIVE MODES IN DAVIS

Davis, renowned as the "Bicycle Capital of the U.S.," has been a trailblazer in promoting bicycling through extensive infrastructure, progressive policies, and a deeply rooted bike culture. Since 2005, Davis has consistently achieved Platinum status as a Bicycle Friendly Community, one of only a handful of communities across the country awarded this designation by the League of American Bicyclists. This recognition honors the City's commitment to enhancing bicycling conditions through education, engineering, equity, encouragement, and evaluation.

As discussed in existing travel patterns, almost 16 percent of workers in Davis commute by bicycle, a figure that surpasses national averages. However, this is a decline from pre-Covid-19 Pandemic conditions when over 19 percent of workers bicycled. The share of travel by bikes and ebikes has remained steady or slightly declined, while the use of e-scooters has increased. These trends are documented in successive UC Davis Campus Travel Surveys (for 2022-23 and 2023-24) that show an increase in e-scooter use, a steady use of e-bikes, and a decrease in human-powered bicycle use. Part of the decrease in bike use may be attributed to the increase in work-from-home rates in Davis, which rose from 8% in 2019 to 23% in 2023, and a corresponding decrease in commute trips.

Bike Facilities

Davis boasts an extensive and well-integrated bicycling infrastructure designed to promote comfortable and convenient bicycle travel while minimizing potential collision risks throughout Davis. **Figure 19** displays the bike facilities in Davis.

Table 5 below presents the classification of bicycle facilities in Davis and the mileage associated with each class. Notably, over 44% of roads within the city have on-street bicycle facilities, reflecting Davis's strong commitment to supporting active transportation. According to the City of Davis Public Works Department's 2016 Street Standards, bike lane (Class II) and cycle track (Class IV bike) lanes are permitted on most city streets, with the exception of local streets. Conversely, sharrows or (Class III) bicycle routes are allowed on most city streets except for arterial roadways. These design standards are consistent with the intended function of each bicycle facility type, ensuring that infrastructure supports safe and efficient bicycle travel throughout the city.

Table 5 Bike Facility Classification

Bike Facility Classification	Definition	Miles	Description				
Class I	Off-Street Multi-Use Path for Bikes and Pedestrians	63 miles	Dedicated multi-use pathways separate bicyclists and pedestrians from vehicular traffic, providing safe and scenic routes across Davis.				
Class II	Bike Lanes	43 miles	Marked bike lanes on roadways facilitate direct and efficient travel for cyclists. Class II bike lanes exist on major arterials, minor arterials, and collectors. Class II bike facilities are not allowed on local streets except for modified local streets. ³⁰				
Class IIb	Buffered Bike Lanes	13 miles	Bike lanes with additional space or physical buffers enhance safety by providing extra separation from motor vehicles.				
Class III	Sharrow / Bicycle Route	2 mile	Low-speed streets optimized for bicycle travel, often featuring traffic calming measures to prioritize bicyclists. Bike routes exist on collector and local streets and are not allowed on major and minor arterials.				
Class IV	Cycle Track / Separated Bikeway	0.5 mile	Physically separated bike lanes offer the highest level of protection for bicyclists on busy streets, also known as protected bike lane. Cycle track exist on major arterials, minor arterials, and collector streets.				

Source: City of Davis, www.cityofdavis.org/bikes

³⁰ According to Davis Public Works Design Standards. https://www.cityofdavis.org/home/showpublisheddocument/8324/636451458844970000

Grade-Separated Crossings

To facilitate uninterrupted and convenient passage for bicyclists and pedestrians, Davis has implemented 25 grade-separated crossings including 4 overpass structures allow bicyclists to cross over major roadways and rail lines and 21 underpass tunnels provide passage beneath busy intersections and transportation corridors.

Bicycle-Specific Traffic Signals

In the 1990s, Davis pioneered the use of bicycle-specific traffic signals in the United States. Currently, there are 11 intersections equipped with these signals, which were designed to reduce conflicts with vehicles through intersections and improve efficiency for cyclists navigating through mixed traffic.

Bicycle Parking

Recognizing the importance of secure and convenient bike parking, Davis offers over 4,300 bike racks distributed throughout Davis and more than 2,000 bike racks located in the downtown area alone.

The City requires that new multiple dwelling developments, nonresidential developments, community facilities and commercial uses install bike parking as described in the City Code. Bicycle parking requirements include a mix of short-term (two hours or less) and long-term bicycle parking.

E-bike and Scooters in Davis

From July 2024 to June 2025, Spin's shared micromobility program in the City of Davis recorded a total of 252,228 rides. Scooters accounted for 184,884 of these trips, while e-bikes comprised 67,204 rides. The program deployed 17,385 scooters and 15,032 e-bikes during this period. The average trip duration was approximately 9.94 minutes. Overall, 75,797 unique users participated, with 46,903 making multiple trips, averaging 4.59 trips per repeat rider. These figures indicate consistent usage of Spin's micromobility services for short-distance travel within the city.

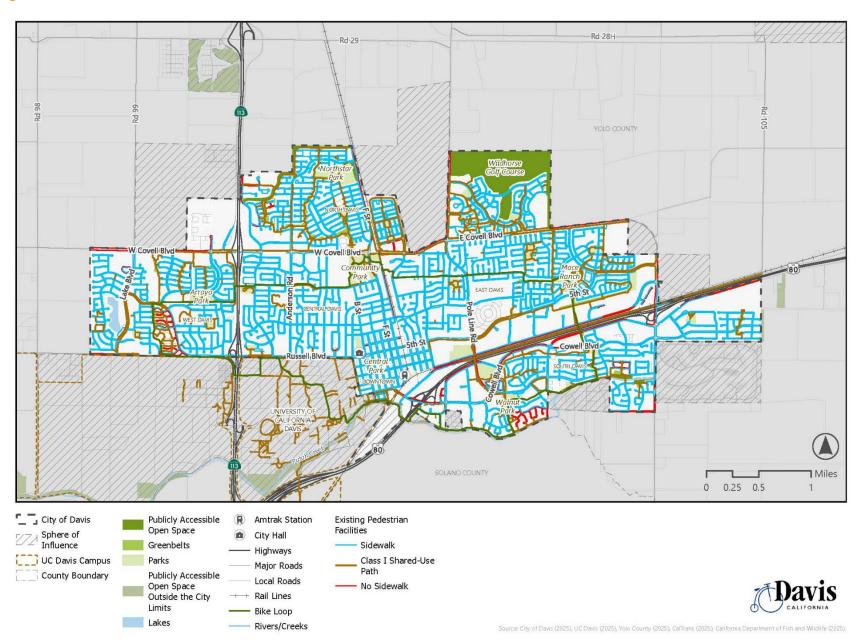
The substantial local usage of e-mobility devices aligns with a broader regional and statewide trend of increasing reliance on electric micromobility options. This growing adoption of e-devices across California reflects a statewide shift toward sustainable, flexible transportation, which will likely continue to influence travel behaviors and mobility patterns significantly in Davis.

Figure 19. Bike Facilities

PEDESTRIAN NETWORK IN DAVIS

Pedestrian Facilities

Figure 20 displays the sidewalk network within the city limits. It shows that the sidewalk coverage expands throughout most of the city roads. However, there are gaps in sidewalk infrastructure predominantly located along the outer edges of the city and in some residential neighborhoods. It should be noted that the Village Homes neighborhood does not have sidewalks, but this is not considered a deficiency. Missing sidewalks in the Cannery neighborhood will be constructed with a planned future development per the approved Cannery development plans. Addressing these sidewalk gaps would enhance walkability citywide and further support pedestrian safety and convenience.


Walking Environment

Recognizing that every visitor to Downtown Davis becomes a pedestrian for at least part of their journey, the City has prioritized maintaining and enhancing high-quality pedestrian facilities and environments. The Downtown Davis Specific Plan highlights that improvements to streetscape elements, wider sidewalks, and the introduction of green infrastructure will significantly enhance the pedestrian environment along key corridors in Downtown Davis. Pedestrian travel is expected to increase, driven by proximity to major trip generators such as the UC Davis campus, and accordingly, the plan includes various enhancements to support pedestrian mobility and comfort. The Downtown Davis Specific Plan also emphasizes compliance with the United States Access Board Proposed Guidelines for Pedestrian Facilities in the Public Right-of-Way, commonly known as Public Right-of-Way Accessibility Guidelines (PROWAG), ensuring universal accessibility. Sidewalk zones are carefully designed based on pedestrian activity levels, aiming to create attractive and comfortable pedestrian spaces that enhance both livability and economic vibrancy.

According to the Beyond Platinum Bicycle Action Plan (2014),³¹ Davis prioritizes complete streets principles, integrating the needs of pedestrians, bicyclists, transit users, and drivers of all ages and abilities into transportation planning, design, and operations. Pedestrian crossings are specifically identified as areas for targeted improvements, with features such as median refuge islands, curb extensions, and warning signals recommended to enhance pedestrian safety and convenience. The plan also acknowledges pedestrian movements alongside bicycle infrastructure as critical components of the city's overall transportation system.

³¹ Beyond Platinum Bicycle Action Plan (2014), https://www.cityofdavis.org/city-hall/public-works-engineering-and-transportation/bike-pedestrian-program/davis-bike-and-pedestrian-infrastructure/bike-plans

Figure 20. Pedestrian Facilities

TRANSPORTATION SAFETY

Transportation safety is broadly defined as the minimization of risk of injury, death, or property damage resulting from use of the transportation network. Use of the network is not without risk as evidenced by collision history reported here. Risk may vary depending on the user and the mode of travel. For example, a collision between a bicycle and a vehicle will have more kinetic energy and greater potential for severe damage than a bicycle and a pedestrian. Davis continually monitors collision data and performs safety studies to evaluate options for continuing to reduce risk for all network users. A summary of the latest Local Road Safety Plan for Davis is contained below, followed by a review of recent collision data analysis from 2022 to 2024.

Local Road Safety Plan Review

The 2023 Local Road Safety Plan (LRSP) for the Davis provides an extensive analysis of collision data from 2009 through 2019, with an emphasis on addressing severe and fatal collisions. Over this period, Davis experienced a total of 1,397 collisions involving pedestrians, bicyclists, and motor vehicles, resulting in various injuries and fatalities. There are no clear trends in the changes to total collisions or killed and severely injured (KSI) collisions over the period; however, both total collisions and KSI collisions have generally increased since 2017.

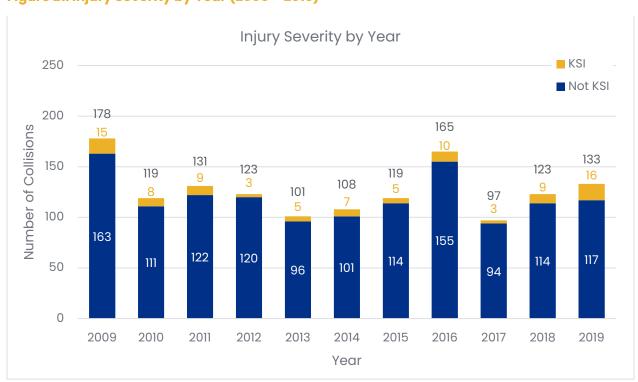


Figure 21. Injury Severity by Year (2009 - 2019)

Source: Davis Local Road Safety Plan, 2023.

Associated with the high percentages of bicycle and pedestrian trips involved Davis, the city has notably high percentages of bicycle and/or pedestrian involved collisions during the analysis period. Collisions involving bicyclists and/or pedestrians account for up to 46 percent of all reported collisions.

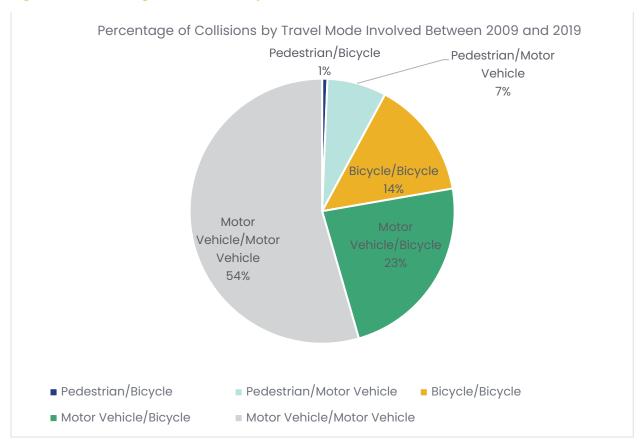


Figure 22. Percentage of Collisions by Travel Model Involved (2009 – 2019)

Source: Davis Local Road Safety Plan, 2023.

Located adjacent to UC Davis, the City of Davis has a notably high proportion of residents aged 18 to 24 years. This age group also prominently appears among drivers, pedestrians, and bicyclists involved in collisions. Specifically, more than half of all bicyclists involved in collisions are between 15 and 29 years old. This underscores the need for targeted safety interventions and educational campaigns tailored specifically to younger populations, especially bicyclists.

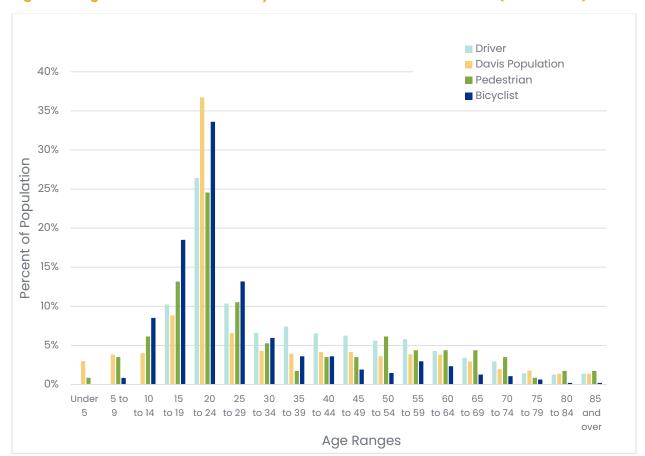


Figure 23. Age of Pedestrians and Bicyclists Involved in Davis Collisions (2009 – 2019)

Source: Davis Local Road Safety Plan, 2023.

In Davis, collisions with a bicycle are the most common type of collision and also have the highest number of KSI collisions among all collision types. Collisions with a bicycle, broadside,³² and rear-end³³ collisions accounted for 73% of collisions in Davis.³⁴

³² A broadside collision occurs when the front of one vehicle crashes into the side of another vehicle/pedestrian/bicycle, forming a "T" shape. This typically happens at intersections when one driver runs a red light or stop sign, or fails to yield.

³³ A rear-end collision happens when one vehicle crashes into the back of another vehicle/pedestrian/bicycle. This is one of the most common types of collisions and often occurs due to following too closely, distracted driving, or sudden stops.

³⁴ According to the 2023 LRSP

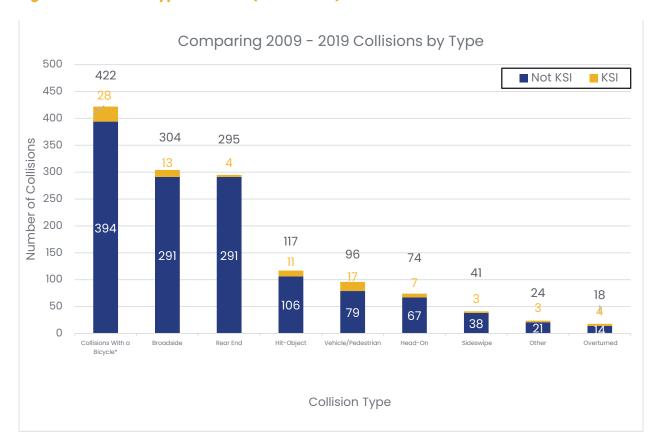


Figure 24. Collision Types in Davis (2009 – 2019)

Note: 422 bicycle collisions were counted as 'Collisions with a Bicycle'. An additional 113 bicycle collisions were counted as a broadside, rear-end, hit-object, head-on, sideswipe, or overturned collision. There were six collisions that were unclassified and not included in these categories.

Source: Davis Local Road Safety Plan, 2023.

Unsafe speed, failure-to-yield, improper turning and traffic signal violations were among the top factors contributing to collisions, as highlighted in the 2023 LRSP. Below includes the key locations where collisions of each of these collision factors clustered. While the 2023 Local Road Safety Plan (LRSP) does not specify the party at fault for these collisions, such information is critical to better understanding the dynamics between vehicles, pedestrians, and bicyclists. Identifying fault patterns would help inform more effective safety strategies.

Collisions related to unsafe speed represented a significant concern, with 389 recorded incidents during the period analyzed. Critical locations with high occurrences of these incidents included intersections along Mace Boulevard at 2nd Street and Russell Boulevard at Anderson Boulevard, with severe injuries and fatalities predominantly involving motor vehicles, bicycles, and pedestrians. An important aspect of these types of collisions is the role driver behavior plays. While the City strives to design the transportation network to minimize the risk of collisions, the ability to influence driver behavior has limits.

Failure-to-yield collisions numbered 345, concentrated mainly in the Downtown Davis area and along prominent corridors such as 5th Street, 8th Street, and Covell Boulevard. Most severe injuries from failure-to-yield collisions involved bicyclists, highlighting particular vulnerabilities at intersections. Improper turning accounted for 130 injury-related incidents, with clusters on Anderson Road and 5th Street.

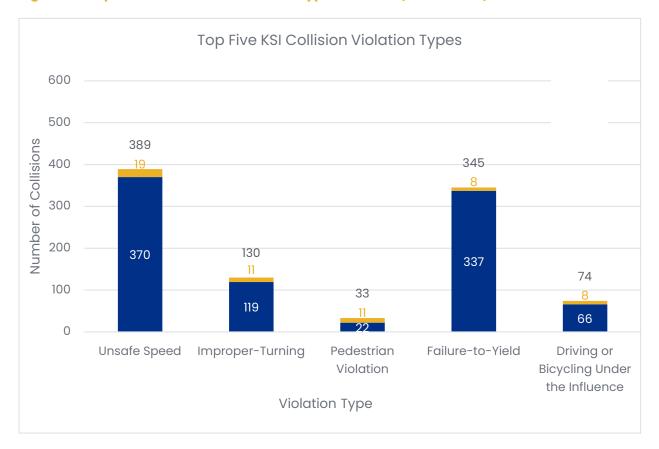


Figure 25. Top Five KSI Collision Violation Types in Davis (2009 – 2019)

Source: Davis Local Road Safety Plan, 2023.

In the 2023 LRSP, alcohol use is responsible for one-third (33%) of all traffic fatalities in Davis. Alcohol was involved in 21% of all collisions resulting in KSI collisions, and 14% of alcohol-related collisions resulted in a KSI outcome.

Collision Analysis of Year 2022 to 2024

341 collisions occurred in Davis (excluding highway system) from January 1, 2022 to December 31, 2024.³⁵ As noted in the 2023 LRSP, collisions in 2020 declined due to the stay-at-

³⁵ According to the three-year collision data acquired from the Transportation Injury Mapping System (TIMS) dataset

home order issued by Yolo County in March 2020 to mitigate the spread of Covid-19 Pandemic. Including data from 2020 could distort long-term collision trends due to the atypical travel patterns during that period. Similarly, traffic activity in 2021 was still influenced by the ongoing effects of the pandemic, which likely continued to impact collision data.

The total collisions from 2022 to 2024 remained lower than the levels observed in 2018 and 2019. However, the KSI collisions stay at a similar level to the 2019 KSI collisions provided in the 2023 LRSP. Motor-to-motor collisions account for 56% of all collisions, representing a 2% increase compared to the pre-COVID data reported in the LRSP. Of these, 8% resulted in KSI collision.

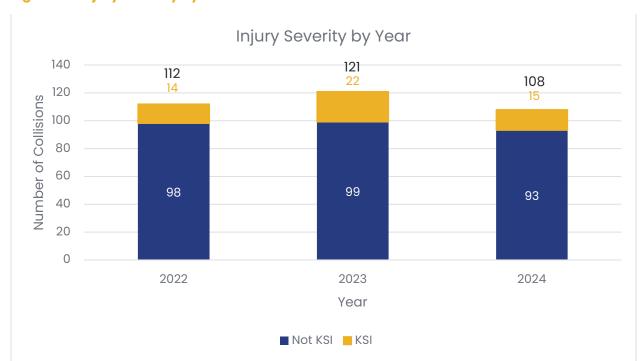


Figure 26. Injury Severity by Year

Source: TIMS 2022-2024 Collision Data; Fehr & Peers, 2025.

Bike Collisions

Among the total collisions from 2022 to 2024, 92 (27 percent) crashes involved bicycles. **Figure 27** displays the map of the severity of collisions involved bicycles in Davis in the three-year analysis period.

On **Figure 27**, the hot spots of bike collisions have a cluster in the area where Davis adjacent to UC Davis, including Russell Boulevard, A Street, 1st Street, 5th Street, and F Street. These locations show consistent distribution with the 2023 LRSP. This concentration of collisions likely reflects areas with the highest levels of bicycling activity, particularly around the UC Davis

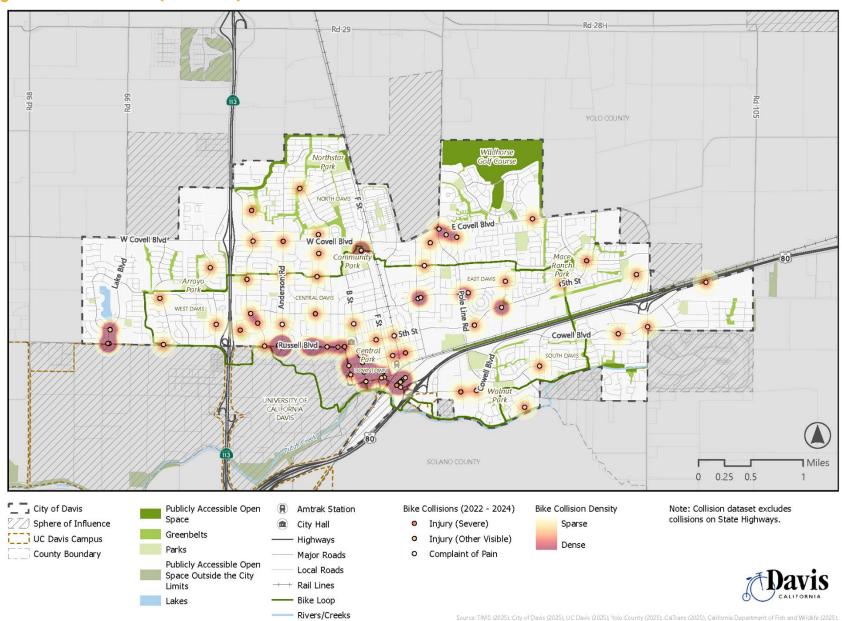
campus. Some other hot spots for bike collisions exist on Lake Boulevard north of Russell Boulevard, E Covell Boulevard east of Pole Line Road, and F Street south of Covell Boulevard.

Appendix D: 2023 LRSP Collision Maps display the bicycle collisions between 2009 and 2019, from the 2023 LRSP. Most severe bicycle collisions occur along Anderson Road and Russell Boulevard. The map also shows KSI bicycle collisions in downtown Davis. There are clusters of higher total collision volumes along Russell Boulevard, Anderson Boulevard, 5th Street, 8th Street and Pole Line Road.

During the three-year analysis period, 17 collisions (19 percent of total bicycle involve collisions) resulted in serious injuries, with no fatalities reported. Russell Boulevard has the most KSI collisions with bicycles involved in the analysis period.

Other than undisclosed or unidentified types of crashes, the most common types of collisions involving bicycles were broadside and sideswipe. The most common Primary Crash Factor (PCF) Violation of the bicycle involved collisions is the automobile right of way,³⁶ followed by improper turning.³⁷

Of all 92 crashes involving bicycles, 29 collisions (32 percent) had bicycles recognized as the fault party. Among the collisions with the PCF factor of automobile right of way and improper turning, vehicles were recognized as the fault party in 76 percent of the collisions, and bicycles were recognized as the fault party in 24 percent of the collisions.


The analysis also revealed the additional details:

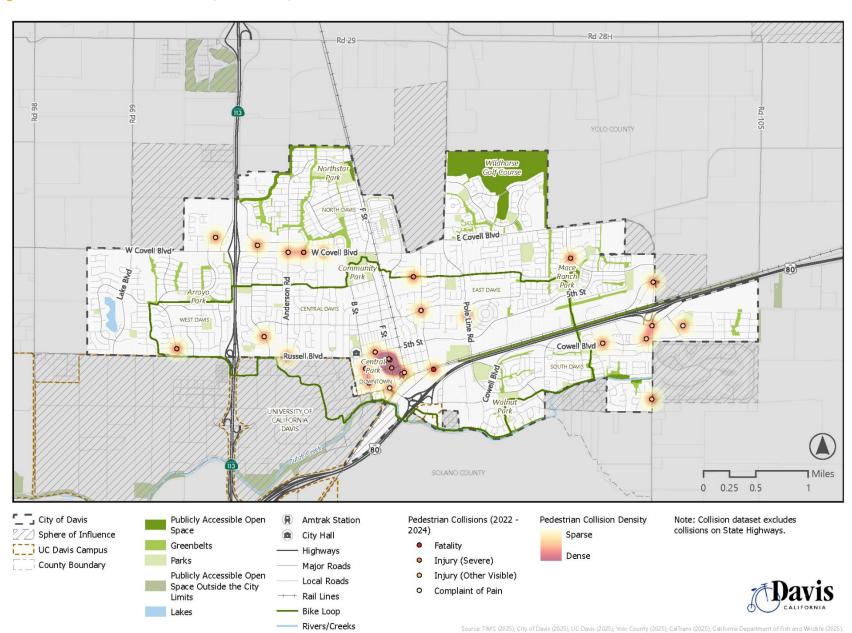
- 37 collisions (40 percent of total bicycle involved collisions) occurred at an intersection.
- 18 collisions (20 percent of total bicycle involved collisions) occurred overnight (7PM to 6AM).
- 12 collisions (13 percent of total bicycle involved collisions) occurred on weekends (Saturday and Sunday).

³⁶ Automobile right of way refers to collisions that occur when a driver fails to properly yield the right-of-way to another road user—typically at intersections, during lane changes, or while merging.

³⁷ Improper turning refers to collisions caused by drivers who make turns that violate traffic laws, disregard roadway conditions, or create unsafe situations for other road users.

Figure 27. Bike Collisions (2022-2024)

Pedestrian Collisions


Between January 1, 2022, and December 31, 2024, Davis recorded a total of 29 (9 percent) pedestrian-involved collisions, based on data from the TIMS. One of the collisions resulted in fatality, and eight others resulted in severe injuries. The remaining incidents involved minor injuries to the pedestrians. **Figure 28** displays the map of the severity of collisions involved pedestrians in Davis in the three-year analysis period. **Appendix D: 2023 LRSP Collision Maps** include the map of pedestrian collisions between 2009 and 2019 from the 2023 LRSP.

Consistent with the 2023 LRSP pedestrian collision map, Figure 28 indicates that the hot spots for pedestrian collisions had a cluster in Downtown Davis, mainly on F Street, B Street, 5th Street, and 1st Street. This pattern reflects the high concentration of pedestrian activity in the downtown core, where walking is most prevalent. Some other hot spots include West Covell Boulevard near Anderson Road and Mace Boulevard near Cowell Boulevard.

Eleven of these collisions occurred at intersections. Evening hours—specifically between 6:00 PM and 9:00 PM—were identified as the most common time frame for these incidents, likely due to reduced visibility and increased traffic activity. Among the primary contributing factors, pedestrian right of way, where drivers fail to yield properly to pedestrians was most frequently cited in collision reports, followed by unsafe speed.

While annual totals remained relatively consistent, there was a noticeable uptick in pedestrian-involved collisions in 2023, mirroring broader statewide trends of increasing pedestrian injuries. In response, Davis has taken proactive steps to enhance pedestrian safety, including the installation of Rectangular Rapid Flashing Beacons (RRFBs) at high-risk crossing locations and the expansion of public awareness campaigns focused on promoting safe driving and walking behaviors.

Figure 28. Pedestrian Collisions (2022-2024)

Local Safety Actions

The 2023 LRSP outlines safety actions to address identified collision trends and reduce risk of collisions in the community. These recommended actions are prioritized into short-term, midterm, and long-term strategies, and cover a wide range of infrastructure improvements, policy enhancements, community-specific interventions, and enforcement and education initiatives.

- Additional Collision Analysis and Data Collection: The City plans to conduct more
 detailed collision analyses, focusing on vulnerable road users such as bicyclists and
 pedestrians. Special attention will be given to incidents involving youth aged 10 to 17. The
 City also aims to engage communities facing transportation inequities and will
 implement a citywide Average Daily Traffic (ADT) data collection program to guide
 future roadway and safety improvements.
- Pedestrian and Bicycle Infrastructure Improvements: The City will evaluate existing
 pedestrian and bicycle infrastructure, especially at uncontrolled crossings, and install
 enhancements like Rectangular Rapid Flashing Beacons (RRFBs) to improve visibility and
 awareness. At signalized intersections, improvements will include pedestrian countdown
 signals, better visibility of traffic signals, and Leading Pedestrian Intervals (LPIs) to reduce
 conflicts. A citywide strategic plan will be developed to install separated bike lanes to
 protect existing riders and enhance the bicycling network to attract new riders.
- Policy and Program Enhancements: Updates to Davis street design standards will aim
 to reduce collision risks, including narrowing travel lanes and removing free right-turn
 lanes. Education programs for junior high and high school students will be expanded to
 promote safe driving, biking, and walking. The City will also collaborate with UC Davis on
 joint outreach efforts and address impaired driving through education at alcoholserving establishments and promotion of rideshare options.
- Speed Management and Enforcement: Davis will increase the use of speed feedback signs to raise driver awareness and encourage safer speeds. The City will evaluate enforcement staffing levels to ensure effective traffic law enforcement. While these strategies may contribute towards reducing collision risk, additional measures could be considered such as expansion of California's speed camera pilot program³⁸ to include Davis and lobbying the state to allow speed limiters in vehicles of repeat speeding offenders.
- Community-Specific Actions: Targeted improvements will be made in areas with aging populations and residents with disabilities, including extended crossing times, improved lighting, and more readable signage. ADA accessibility upgrades will be prioritized citywide. To support the City's multilingual community, the City will implement universal signage and distribute multilingual educational materials to ensure safety messages are accessible to all residents.

³⁸ https://legiscan.com/CA/text/AB645/id/2845946

TRANSPORTATION COSTS AND FUNDING

The State of California 2017 General Plan Guidelines, Governor's Office of Planning and Research, 2017 includes the following expectation for how to address transportation costs and funding in a general plan circulation element.

The circulation element must identify funding for capital, operations, and maintenance of planned additions to the network, additions that would be triggered by policies in the element, and the existing network. – page 74

Complying with this expectation begins with having a complete inventory of the existing public transportation network, its associated operating and maintenance costs, and the specific funding sources and amounts dedicated to covering these costs. As with other cities in California, this level of data for the complete transportation network is not available for Davis. As a proxy though, the City has a Pavement Management Program that provides essential insights as to the potential gaps between costs and fundings.

Pavement Conditions in Davis

Davis maintains approximately 217.3 centerline miles of pavements, comprising 166 miles of streets and 51.3 miles of bike paths. The 166 miles of streets include over 350 lane miles. The average Pavement Condition Index (PCI) for both streets and bike paths is currently rated as "Fair," with a score of 62. Approximately 38.6% of the street network and 45.7% of the bike paths are in "Good" condition.³⁹ Conversely, 3% of streets and 12.7% of bike paths fall into the "Failed" category. Improvements have been recorded compared to previous years, notably an increase in streets in "Good" condition from 32.1% (2022) to 38.6% (2025) and a reduction in "Failed" conditions from 7.9% to 3%. Similar improvements have occurred for bike paths, with good conditions increasing from 33% to 45.7% and failed conditions reducing from 23.5% to 12.7%.

³⁹ According to the 2025 Pavement Management Program (PMP) Update Report.

https://documents.cityofdavis.org/Media/CityCouncil/Documents/PDF/PW/Engineering-and-Transportation/Pavement-Management/2025-Update/2025-Pavement-Management-Report-Update-CIP-8250_ATTI-PMP-Report_Opt.pdf

Cost of Maintaining the Current Transportation Network

The City's existing Pavement Management Program has defined maintenance and rehabilitation (M&R) strategies based on pavement conditions. Streets rated "Good" typically receive preventive treatments such as crack sealing and base repairs costing about \$6.25 per square yard. Streets rated "Fair" or "Poor" receive treatments like Hot Mix Asphalt (HMA) overlays or recycling treatments ranging from approximately \$11.00 to \$76.00 per square yard. Streets in "Failed" condition undergo significant rehabilitation or reconstruction, costing around \$122.50~\$148.00 per square yard. These unit costs have significantly increased due to rising construction costs, particularly the price of Hot Mix Asphalt.

To maintain and achieve the City's target PCI values (Scenario 2 — Improve to Target PCIs), which aims to achieve PCI 68 for arterials, 65 for collectors, 60 for residential/local streets, and 68 for bike paths, Davis would need to allocate \$98.8 million for streets and \$10.4 million for bike paths over the next 10 years, totaling approximately \$109.2 million. This translates to an annual budget of approximately \$10.9 million, factoring in soft costs and non-pavement expenses such as curb, gutter, and ADA ramp enhancements.

Funding

According to the 2025 PMP Update Report, Davis has allocated an annual pavement maintenance budget averaging \$8.4 million through FY 2028/29. This budget includes local funds and contributions from SB 1 Local Streets and Roads funds provided by the state. Specifically, Davis dedicates roughly \$4 million annually from local funds for pavement maintenance and an additional portion from state funding. Additionally, a utility trench cut fee was implemented to offset pavement damages caused by utility work, which further contributes to available funds.

Despite these funding sources, there remains a notable funding shortfall. Deferred maintenance, representing costs for maintenance activities delayed due to insufficient funding, is projected to rise significantly under the existing funding scenario (Scenario 1 — Existing Budget). If the City maintains the current funding level without adjustments, deferred maintenance is expected to reach approximately \$170.9 million for streets and \$13.7 million for bike paths by 2034.

To achieve and maintain the desired pavement conditions by 2034 (Scenario 2 — Improve to Target PCIs), an additional \$2.5 million per year above the current average annual funding of \$8.4 million is required. This leads to an estimated funding gap of approximately \$25 million over the next decade. The shortfall arises primarily due to increasing construction and material costs, adjustments in the pavement management modeling approach, and inflationary pressures which have raised unit maintenance and rehabilitation costs.

The City's Pavement Management Subcommittee has already proposed several strategies to close this gap, including gradually increasing general fund contributions, allocating additional funding from sources impacted by heavy vehicles (such as solid waste services), redirecting unallocated gas tax funds, adjusting maintenance strategies to be more cost-effective, and enhancing funding via grants.

According to the City of Davis staff, as of May 2025, there are 149 transportation projects currently approved by the City Council. Only transportation projects for Richards Blvd/Olive Dr Circulation Improvements Feasibility Study Report have project cost information available. The initial cost for these projects is \$71.79 million.

The pavement funding gap is only part of the cost and funding story for the larger transportation network. The network includes other facilities and services to accommodate walking, bicycling, transit, and driving. The cost to maintain and operate the existing transportation network is an essential input to the general plan because it helps inform the policy choices related to expected operating conditions. Without this information, any expansion of the network creates potential financial risks for Davis due to the long-term obligation to operate and maintain those expansions. Without more complete information, the circulation policies should be designed to minimize financial risk when address network modifications or expansion.

TRANSPORTATION DEMAND MANAGEMENT

This section provides an overview of Transportation Demand Management (TDM) efforts in the City of Davis. It focuses on Yolo Commute and the range of services it offers to encourage active modes of travel, reduce single-occupancy vehicle trips, and promote sustainable transportation options within the community.

Yolo Commute

Yolo Commute⁴⁰ is a nonprofit collaborative partnership involving public agencies and private employers focused on reducing single-occupant vehicle commuting within Yolo County. The organization actively encourages sustainable commuting practices like biking, walking, carpooling, and public transportation. Below summarizes the programs offered by Yolo Commute.

Yolo Commute programs and incentives are available exclusively to employees affiliated with member organizations of the Yolo Commute partnership. Member organizations typically include local employers, both public and private, situated within Yolo County. Employees of these participating entities who actively commute using sustainable transportation methods are eligible to access the full suite of programs and benefits offered by Yolo Commute.

Source: Yolo Commute, https://www.yolocommute.net/

MAY IS BIKE MONTH (MIBM) INCENTIVES

Every May, in collaboration with the Sacramento Area Bicycle Advocates (SABA), Yolo Commute actively promotes bicycling through the "May is Bike Month" initiative. This program

⁴⁰ Yolo Commute, https://www.yolocommute.net/

provides financial incentives to encourage members to ride bikes for commuting purposes. Participants are eligible to receive incentives toward bicycle accessories, tune-ups, or repairs at local bike shops. Additionally, members interested in purchasing new bicycles can obtain reimbursement for a conventional bike or for an electric-assist bicycle. Individuals who benefited from bike purchase incentives in the prior year remain eligible only for accessory-related incentives in the current year.

VELOTRIC E-BIKE DISCOUNT PROGRAM

Yolo Commute established a discount partnership with Velotric, offering members special rebates on selected electric bicycle models. Specifically, a \$100 rebate is available for purchases of the Velotric Discover 2 and Summit 1 models, while a \$50 rebate applies to the Fold 1 model. Members must purchase their e-bikes directly from participating local bike shops. This program supports members in transitioning to electric-assisted bicycling, enhancing commuting ease and accessibility.

GUARANTEED RIDE HOME (GRH) PROGRAM

Yolo Commute provides the Guaranteed Ride Home program as a practical safety net for members who regularly use alternative commute options. In scenarios such as unexpected overtime, family emergencies, personal illness, bicycle mechanical failures, or severe weather, this program reimburses eligible members up to \$50 per ride for emergency transportation, including taxis, ride-hailing services, or rental cars. Members can utilize this benefit up to six times annually, ensuring peace of mind for those committed to sustainable commuting methods.

YOLO COMMUTE

Yolo Commute's incentive program offers a variety of financial incentives, discount transit passes, e-bike loan and other programs to encourage members to adopt and consistently use alternative commuting modes, such as carpooling, vanpooling, public transit, biking, or walking.⁴¹

UC DAVIS TRANSPORTATION SERVICES

UC Davis Transportation Services supports many of the same commute-reduction efforts as Yolo Commute, particularly for employees based on or near campus. UC Davis employees may access Yolo Commute incentives, and the campus also offers its own additional programs:

⁴¹ Yolo Commute. Retrieved from https://www.yolocommute.net/incentives-programs/

Commute Options: UC Davis participates in the Commuter Card Benefits Program, ⁴² allowing pre-tax income to be used for commuting expenses. The campus also offers Zipcar⁴³ and Spin⁴⁴ programs to support car-sharing and e-scooter use.

Mobility Assistance Shuttle (MAS): ⁴⁵ Provides free on-campus rides for individuals with temporary or permanent mobility limitations.

Unitrans: Offers public bus service throughout Davis and campus. UC Davis undergraduates ride free as part of their student fees.

Davis-Berkeley Shuttle: ⁴⁶ A weekday intercampus shuttle connecting UC Davis and UC Berkeley, open to students, faculty, and staff with reservations.

Bicycle Program: Includes free bike registration, parking, and long-term storage options. Some services, such as summer storage, require a fee.

Parking: UC Davis manages parking through the HONK and AggiePark⁴⁷ apps and the Level Rate Parking Program (LRPP),⁴⁸ offering both daily and monthly permit options.

⁴² Commuter Card Benefits Program information can be found at https://transportation.ucdavis.edu/commuterbenefits.

⁴³ Zipcar information can be found at https://www.zipcar.com/universities/university-of-california-davis.

⁴⁴ Spin Shared Micromobility Program information can be found at https://transportation.ucdavis.edu/spin.

⁴⁵ MAS information can be found at https://transportation.ucdavis.edu/parking/mas.

⁴⁶ Davis-Berkeley Shuttle information can be found at https://safetyservices.ucdavis.edu/units/fleet-services/davis-berkeley-shuttle.

⁴⁷ AggiePark information can be found at https://transportation.ucdavis.edu/aggiepark.

⁴⁸ LRPP in UC Davis information can be found at https://transportation.ucdavis.edu/lpr.

APPENDIX A: DATA SOURCE COMPARISON

Several data sources are commonly used to analyze travel behavior, commuting patterns, and system performance in Davis and the broader SACOG region, including LEHD, ACS, Replica, PeMS, and HPMS. Each dataset serves a distinct purpose and varies in terms of data granularity, geographic coverage, update frequency, and applicability. The hierarchy of use—and which source governs over others—depends on the type of analysis being conducted.

- Longitudinal Employer-Household Dynamics (LEHD) OnTheMap: a web-based application provided by the U.S. Census Bureau that visualizes detailed origin-destination data, showing where people live and work. It combines administrative records with census data to offer insights into commuting patterns and workforce dynamics at various geographic levels. In addition to showing inbound and outbound worker flows, it also provides job counts by location, supporting a better understanding of employment distribution. However, the survey data from this source does not measure actual trips between work and home Instead, the data is based on employer-reported workplace locations and inferred residence locations, with no direct observation of travel behavior or commute modes. As such, complementary data sources are needed to provide a complete picture of commuting patterns.
 LEHD OnTheMap is used in this analysis to support the discussion of job-housing balance and mismatch.
- American Community Survey (ACS): A household survey conducted by the U.S. Census Bureau that provides detailed data on various demographic, social, economic, and housing characteristics, including commuting patterns. The commuting data reflects the geographic location of the household to which the commuter belongs. This dataset provides 1-year estimates and 5-year estimates of the collected data.
 - ACS 5-year estimates are used to supplement LEHD data by providing additional insights into commute mode share.
- Replica:⁴⁹ a platform that uses land use and network data to model travel behavior, providing additional insights into commute patterns. It generates simulated, activity-based travel data that captures trips across all purposes and links them to detailed traveler characteristics such as age, income, and mode choice. Updated seasonally, Replica data provides a near-real-time snapshot of travel patterns and has been used by SACOG and other regional agencies to better understand origin-destination (OD) distributions and broader travel trends.
 - Replica data is used in daily OD trip pattern discussion.
- Performance Measurement System (PeMS):⁵⁰ a data platform managed by Caltrans that collects real-time and historical traffic data from sensors installed on highways and major roadways. It provides detailed insights into traffic flow, speed, and congestion, enabling in-depth analysis of transportation system performance.

⁴⁹ Additional information about Replica can be found at https://www.replicaha.com/

⁵⁰ Additional information about PeMS data can be found at https://pems.dot.ca.gov/

- PeMS data is used to evaluate traffic flow patterns on I-80, including metrics such as speed, volume, and congestion trends.
- Highway Performance Monitoring System (HPMS): HPMS is a national dataset
 maintained by the Federal Highway Administration (FHWA) that compiles roadway
 characteristics, traffic volumes, and VMT for all functional classifications of roads,
 including freeways, arterials, collectors, and local streets. The data is submitted
 annually by local jurisdictions and state departments of transportation. As of 2016, the
 SACOG region reported a total of 27,336.42 lane miles, with the City of Davis maintaining
 162.74 lane miles—excluding state highways and roads owned by the U.S. Navy or
 Marine Corps.

HPMS data is not directly used in the analysis presented in this report; however, it is commonly referenced in regional and statewide VMT discussions.

Table A-1 highlights the key differences among these sources, providing a comparative overview to aid in selecting the most suitable data for specific commute analysis needs.

Table A-1: Commute Pattern Data Sources and Comparison

Data Source	ACS	LEHD	Replica	PeMS
Open-source data that is available to the public	Х	Х		Х
Demographic integration	Х		х	
Employment Origin-Destination pattern		Х	х	
Mode share	Х		х	
Real time data				Х
Seasonal update			Х	Х
Annually update	Х	Х	Х	Х
Historical data before 2019	Х	Х		Х

Source: Fehr & Peers, 2025.

APPENDIX B: LOS PERFORMANCE MEASUREMENT RESULTS

Figure B-1. Study Segment Map

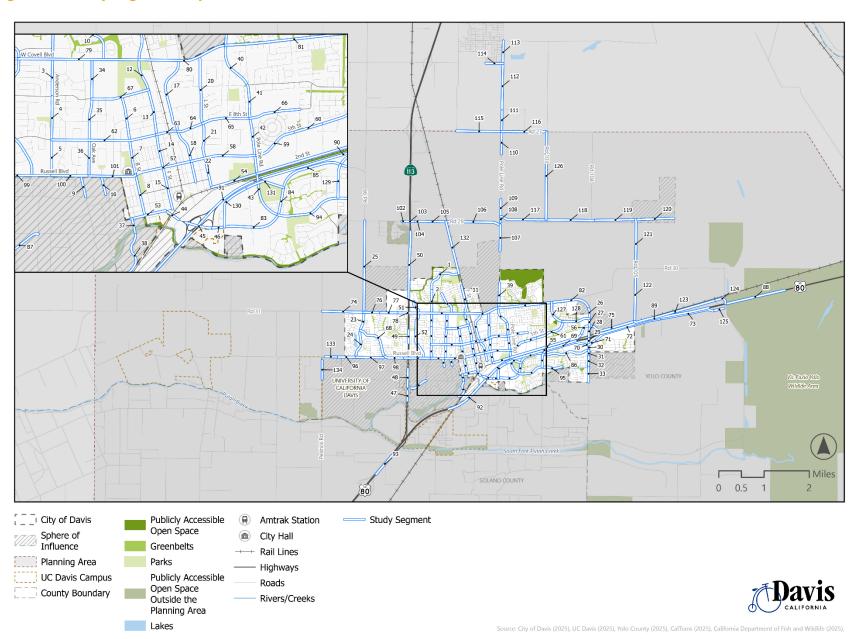


Table B-1: LOS Performance Measurement Results for AM and PM Peak Hours

							Volume		LOS ⁴	
ID ¹	Road Name	Segment Limits	Count ²	Func ³	Lane	Daily	АМ	РМ	AM	РМ
1	Anderson Road	F Street to Catalina Drive	Seg	Mi	2	1,456	125	140	A-C	A-C
2	Anderson Road	Catalina Drive to Covell Boulevard	Int	Mi	2	4,900	439	443	A-C	A-C
3	Anderson Road	Covell Boulevard to Villanova Drive	Int	Mi	4	10,388	901	761	A-C	A-C
4	Anderson Road	Villanova Drive to 8th Street	Seg	Mi	2	8,289	642	713	A-C	A-C
5	Anderson Road	8th Street to Russell Boulevard	Seg	Mi	2	8,997	648	754	A-C	A-C
6	B Street	14th Street to 8th Street	Seg	Со	2	3,643	433	353	A-C	A-C
7	B Street	8th Street to Russell Boulevard	Seg	Mi	2	5,837	543	512	A-C	A-C
8	B Street	Russell Boulevard to First Street	Seg	Mi ⁵	2	12,353	764	978	A-C	A-C
9	California Avenue	South of Russell Boulevard	Seg	Lo	2	2,592	232	249	-	_
10	Catalina Drive	Grande Avenue to Covell Boulevard	Int	Со	2	4,083	321	414	A-C	A-C
11	F Street	Grande Avenue to Covell Boulevard	Int	Mi	2	8,033	700	746	A-C	A-C
12	F Street	Covell Boulevard to 14 Street	Int	Mi	2	11,344	840	975	A-C	A-C
13	F Street	14th Street to 8th Street	Int	Mi	2	8,413	527	819	A-C	A-C
14	F Street	8th Street to 5th Street	Seg	Mi	2	7,223	441	611	A-C	A-C
15	F Street	5th Street to 1st Street	Seg	Mi	2	6,287	336	478	A-C	A-C
16	Howard Way	South of Russell Boulevard	Seg	Lo	2	5,852	415	599	-	-
17	J Street	Covell Boulevard to 8th Street	Int	Со	2	5,225	510	326	A-C	A-C
18	J Street	8th Street to 3rd Street	Seg	Со	2	1,036	64	105	A-C	A-C

	Barrel Marrie		0	= 2			Volume		LC)S ⁴
ID ₁	Road Name	Segment Limits	Count ²	Func ³	Lane	Daily	AM	РМ	AM	PM
20	L Street	Covell Boulevard to 8th Street	Int	Со	2	4,556	311	418	A-C	A-C
21	L Street	8th Street to 5th Street	Seg	Со	2	5,932	412	545	A-C	A-C
22	L Street	5th Street to 2nd Street	Seg	Mi	2	7,047	414	686	A-C	A-C
23	Lake Boulevard	Covell Boulevard to Arlington Boulevard	Int	Mi	2	5,371	397	516	A-C	A-C
24	Lake Boulevard	Arlington Boulevard to Russell Boulevard	Seg	Mi	2	2,932	245	262	A-C	A-C
25	County Road 99	North of Covell Boulevard	Int	Со	2	2,247	171	211	A-C	A-C
26	Mace Boulevard	Covell Boulevard to Alhambra Drive	Int	Ма	2	11,565	1,094	1,219	A-C	A-C
27	Mace Boulevard ⁶	Alhambra Drive to 2nd Street	Int	Ма	4	15,265	1,478	1,575	-	-
28	Mace Boulevard ⁶	2nd Street to I-80 WB Ramps	Int	Ма	4	21,095	2,028	2,191	-	-
29	Mace Boulevard ⁶	I-80 WB Ramps to Chiles Road	Int	Ма	4	21,694	1,904	2,001	-	-
30	Mace Boulevard ⁶	Chiles Road to Cowell Boulevard	Int	Ма	4	12,467	1,036	1,208	-	-
31	Mace Boulevard	Cowell Boulevard to El Macero Drive	Seg	Ма	4	6,998	602	651	A-C	A-C
32	Mace Boulevard	El Macero Drive to San Marino Drive	Seg	Mi ⁵	2	5,197	386	657	A-C	A-C
33	Mace Boulevard	San Marino Drive to Montgomery Avenue	Seg	Mi ⁵	2	2,947	208	330	A-C	A-C
34	Oak Avenue	Covell Boulevard to 14th Street	Int	Со	2	4,891	687	438	A-C	A-C
35	Oak Avenue	14th Street to 8th Street	Seg	Со	2	2,128	281	210	A-C	A-C
36	Oak Avenue	8th Street to Russell Boulevard	Seg	Со	2	1,784	1,784 223 160		A-C	A-C
37	Old Davis Road	1 st Street to Arboretum Drive	Seg	Lo	2	6,603	384	544	-	-
38	Old Davis Road	Arboretum Drive to Alumni Lane	Seg	Lo	2	5,152	360	449	-	-

1				_ 2			Volume		LC)S ⁴
ID ¹	Road Name	Segment Limits	Count ²	Func ³	Lane	Daily	AM	РМ	AM	PM
39	Pole Line Road	North of Covell Boulevard	Int	Ма	2	12,640	951	1,324	A-C	D
40	Pole Line Road	Covell Boulevard to Loyola Drive	Int	Mi	2	11,731	796	1,081	A-C	A-C
41	Pole Line Road	Loyola Drive to 8th Street	Seg	Mi	2	11,473	875	1,001	A-C	A-C
42	Pole Line Road	8th Street to 5th Street	Seg	Mi	2	13,587	1,038	1,209	A-C	D
43	Pole Line Road	5th Street to Cowell Boulevard	Seg	Mi ⁵	2	15,858	1,217	1,414	D	E
44	Richards Boulevard ⁶	E Street to East Olive Drive	Seg	Mi ⁵	2	20,622	1,188	1,481	-	-
45	Richards Boulevard ⁶	I-80 WB Ramps to I-80 EB Ramps	Seg	Mi ⁵	4	19,476	1,217	1,430	-	-
46	Richards Boulevard ⁶	I-80 EB Ramps to Research Park Drive	Seg	Mi ⁵	4	18,653	1,325	1,449	-	-
47	State Route 113	1-80 to Hutchison Drive	AADT	Fr	6	36,500	4,650	4,650	A-C	A-C
48	State Route 113	Hutchison Drive to Russell Boulevard	AADT	Fr	6	32,500	4,600	4,600	A-C	A-C
49	State Route 113	Russell Boulevard to Covell Boulevard	AADT	Fr	4	28,500	3,950	3,950	A-C	A-C
50	State Route 113	North of Covell Boulevard	AADT	Fr	4	21,400	2,750	2,750	A-C	A-C
51	Sycamore Lane	North of Covell Boulevard	Int	Mi	2	6,244	535	589	A-C	A-C
52	Sycamore Lane	Covell Boulevard to Russell Boulevard	Int	Со	2	5,794	480	447	A-C	A-C
53	1st Street	A Street to E Street	Seg	Mi ⁵	2	10,834	794	782	A-C	A-C
54	2nd Street	L Street to Pole Line Road	Seg	Mi	2	7,121	397	748	A-C	A-C
55	2nd Street	Pole Line to 1/4. mi. West of Mace Boulevard	Int	Mi	2	2 11,369 650 1,169		A-C	D	
56	2nd Street	1/4 mi. West of Mace Boulevard	Int	Мі	4	13,275	793	1,331	A-C	A-C
57	5th Street	B Street to L Street	Seg	Mi ⁵	2	11,408	756	962	A-C	A-C

un!	BIN	A	2	- 2			Volume		LC)S ⁴
ID ¹	Road Name	Segment Limits	Count ²	Func ³	Lane	Daily	AM	РМ	AM	РМ
58	5th Street	L Street to Pole Line Road	Seg	Mi ⁵	2	11,689	841	1,012	A-C	A-C
59	5th Street	Pole Line Road to Cantrill Drive	Seg	Mi	2	9,805	739	879	A-C	A-C
60	5th Street	Cantrill Drive to Pena Drive	Seg	Mi	2	5,565	474	533	A-C	A-C
61	5th Street	East of Pena Drive	Seg	Mi	2	3,752	337	372	A-C	A-C
62	8th Street	Anderson Road to F Street	Seg	Mi	2	6,927	603	595	A-C	A-C
63	8th Street	F Street to J Street	Seg	Mi	2	7,671	629	726	A-C	A-C
64	8th Street	J Street to L Street	Seg	Mi	2	7,050	583	700	A-C	A-C
65	8th Street	L Street to Pole Line Road	Seg	Mi	2	6,064	526	605	A-C	A-C
66	8th Street	East of Pole Line Road	Seg	Со	2	3,411	320	293	A-C	A-C
67	14th Street	Oak Avenue to F Street	Seg	Со	2	4,552	469	537	A-C	A-C
68	Arlington Boulevard	Lake Boulevard to Russell Boulevard	Seg	Mi	2	5,154	469	454	A-C	A-C
69	Chiles Road ⁶	Cowell Boulevard to I-80 EB Ramps	Int	Mi	2	9,833	746	1,024	-	-
70	Chiles Road ⁶	I-80 EB Ramps to Mace Boulevard	Int	Mi	4	11,272	972	1,057	-	-
71	Chiles Road	Mace Boulevard to El Cemonte Avenue	Int	Mi	2	9,811	763	1,003	A-C	A-C
72	Chiles Road	El Cemonte Avenue to County Road 105D	Seg	Mi	2	3,171	136	656	A-C	A-C
73	Chiles Road	County Road 105D to Webster Ramps	Int	Lo	2	2,272	150	418	-	-
74	Country Road 31	West of Lake Boulevard	Int	Ма	2	5,794 464 521		A-C	A-C	
75	Country Road 32A	East of Mace Boulevard	Int Mi 2 2,813 85 36		365	A-C	A-C			
76	Covell Boulevard	Lake Boulevard to Denali Drive	Int	Ма	2	8,553	668	786	A-C	A-C

							Volume		LC)S ⁴
ID ¹	Road Name	Segment Limits	Count ²	Func ³	Lane	Daily	AM	РМ	AM	РМ
77	Covell Boulevard	Denali Drive to Shasta Drive	Int	Ма	2	11,524	910	1,049	A-C	A-C
78	Covell Boulevard	Shasta Drive to Sycamore Lane	Int	Ма	4	20,644	1,681	1,828	A-C	A-C
79	Covell Boulevard	Sycamore Lane to F Street	Int	Ма	4	17,616	1,411	1,760	A-C	A-C
80	Covell Boulevard	F Street to Pole Line Road (overcrossing)	Int	Ма	4	20,947	1,715	2,055	A-C	A-C
81	Covell Boulevard	Pole Line Road to Alhambra Drive	Int	Ма	4	13,194	1,207	1,432	A-C	A-C
82	Covell Boulevard	Alhambra Drive to Mace Boulevard/County Road 30B	Int	Ма	2	11,102	1,029	1,192	A-C	A-C
83	Cowell Boulevard	Research Park Drive (W) to Pole Line Road	Seg	Mi ⁵	2	12,988	909	1,034	A-C	A-C
84	Cowell Boulevard	Pole Line Road to Research Park (E)	Seg	Mi ⁵	2	7,197	365	713	A-C	A-C
85	Cowell Boulevard	Research Park (E) to Chiles Road	Seg	Mi ⁵	2	8,086	569	924	A-C	A-C
86	Cowell Boulevard	Chiles Road to Mace Boulevard	Seg	Mi	2	3,957	361	390	A-C	A-C
87	Hutchison Drive	State Route 113 to La Rue Road	Seg	Lo	2	12,658	1,087	986	-	-
88	I-80	East of County Road 32A/Chiles Road	PeMS	Fr	6	201,028	13,830	11,812	F	F
89	I-80	Webster Ramps to Mace Boulevard	PeMS	Fr	6	95,402	6,320	6,004	A-C	A-C
90	I-80	Mace Boulevard to Pole Line Road	PeMS	Fr	6	91,626	5,361	5,709	A-C	A-C
91	I-80	Pole Line Road to Richards Boulevard	AADT	Fr	6	101,000	10,500	10,500	D	D
92	I-80	Richards Boulevard to State Route 113	AADT	Fr	8	106,000	10,800	10,800	A-C	A-C
93	I-80	West of State Route 113	AADT	Fr	8	231,000	16,000	16,000	F	F
94	Lillard Drive	Pole Line Road to Drummond Avenue	Seg	Мі	2	6,885	723	599	A-C	A-C
95	Lillard Drive	East of Drummond Avenue	Seg	Со	2	635	61	65	A-C	A-C

							Volume		LO)S ⁴
ID ¹	Road Name	Segment Limits	Count ²	Func ³	Lane	Daily	AM	РМ	AM	PM
96	Russell Boulevard	West of Lake Boulevard	Seg	Мі	2	3,647	338	396	A-C	A-C
97	Russell Boulevard	Lake Boulevard to Arlington Road	Seg	Mi	2	5,734	508	481	A-C	A-C
98	Russell Boulevard ⁶	Arlington Road to State Route 113 SB Ramps	Seg	Ма	4	12,298	1,181	964	-	-
99	Russell Boulevard ⁶	State Route 113 SB Ramps to Anderson Road	Seg	Ма	4	18,509	1,597	1,503	-	-
100	Russell Boulevard ⁶	Anderson Road to Oak Avenue	Seg	Ма	4	20,510	1,282	1,577	-	-
101	Russell Boulevard ⁶	Oak Avenue to B Street	Seg	Ма	4	19,792	1,105	1,553	-	-
102	County Road 29	County Road 99D to State Route 113 SB Ramps	Int	Mi	2	4,695	452	487	A-C	A-C
103	County Road 29	State Route 113 SB Ramps to State Route 113 NB Ramps	Int	Mi	2	5,895	600	579	A-C	A-C
104	County Road 29	State Route 113 NB Ramps to County Road 100A	Int	Mi	2	6,830	735	631	A-C	A-C
105	County Road 29	County Road 100A to County Road 101A	Int	Mi	2	6,220	652	592	A-C	A-C
106	County Road 29	County Road 101A to County Road 102	Int	Mi	2	3,995	400	399	A-C	A-C
107	County Road 102	Davis Solar Test Site Driveway to County Road 29	Int	Mi	2	9,015	860	943	A-C	A-C
108	County Road 102	County Road 29 to County Road 28H	Int	Mi	2	8,295	751	908	A-C	A-C
109	County Road 102	North of County Road 28H	Int	Mi	2	8,800	789	971	A-C	A-C
110	County Road 102	South of County Road 27	Int	Mi	2	8,780	774	982	A-C	A-C
111	County Road 102	County Road 27 to County Road 26A	Int	Mi	2	8,130	725	901	A-C	A-C

							Volume		LC)S ⁴
ID ¹	Road Name	Segment Limits	Count ²	Func ³	Lane	Daily	АМ	РМ	АМ	PM
112	County Road 102	County Road 26A to County Road 25A	Int	Mi	2	8,145	735	894	A-C	A-C
113	County Road 102	County Road 25A to County Road 25/Heritage Parkway	Int	Mi	2	7,385	636	841	A-C	A-C
114	County Road 25A	Miekle Avenue to County Road 102	Int	Со	2	1,460	161	131	A-C	A-C
115	County Road 27	County Road 101 to County Road 102	Int	Со	2	1,930	174	212	A-C	A-C
116	County Road 27	County Road 102 to County Road 103	Int	Со	2	250	17	33	A-C	A-C
117	County Road 28H	County Road 102 to County Road 103	Int	Со	2	1,720	139	205	A-C	A-C
118	County Road 28H	County Road 103 to Yolo County Landfill Driveway	Int	Со	2	1,935	153	234	A-C	A-C
119	County Road 28H	Yolo County Landfill Driveway to County Road 105	Int	Со	2	1,605	134	187	A-C	A-C
120	County Road 28H	East of County Road 105	Int	Со	2	35	6	1	A-C	A-C
121	County Road 105	County Road 28H to County Road 30	Int	Со	2	1,610	134	188	A-C	A-C
122	County Road 105	County Road 30 to County Road 32A	Int	Со	2	1,670	139	195	A-C	A-C
123	County Road 32A	County Road 105 to I-80 WB Webster Ramps	Int	Со	2	5	1	0	A-C	A-C
124	County Road 32A	I-80 WB Webster Ramps to Chiles Road	Int	Со	2	2,750	172	378	A-C	A-C
125	Chiles Road	I-80 EB Webster Ramps to Farm Road	Int	Lo	2	2,795	172	387	-	-
126	County Road 103	County Road 27 to County Road 28H	Int	Со	2	285	20	37	A-C	A-C
127	Alhambra Drive	5th Street to Covell Boulevard	Seg	Mi	2	2,853	285	286	A-C	A-C
128	Alhambra Drive	Mace Boulevard to 5th Street	Seg	Mi	2	4,942	503	415	A-C	A-C

ID1	D ¹ Road Name	Commontinito	Count ²	Func³	Lama		Volume		LOS⁴		
וט.	Road Name	Segment Limits	Count	runc*	Lane	Daily	AM	РМ	AM	РМ	
129	Drummond Avenue	Cowell Boulevard to Lillard Drive	Seg	Mi	2	1,639	201	138	A-C	A-C	
130	Research Park Drive	Richards Boulevard to Drew Avenue	Seg	Mi	2	2,573	227	284	A-C	A-C	
131	Research Park Drive	Drew Avenue to Cowell Boulevard	Seg	Mi	2	2,702	221	316	A-C	A-C	
132	F Street	Anderson Road to County Road 29	Seg	Lo	2	2,849	234	280	-	-	
133	Russell Boulevard	County Road 98 to Patwin Road	Seg	Lo	2	3,232	299	365	-	-	
134	County Road 98	Hutchison Drive to Russell Boulevard	Seg	Со	2 5,011 389		467	A-C	A-C		

Notes:

- 1. Segments 19, 135, and 136 are future roadway segments and are therefore not reported with traffic volumes or LOS under existing conditions.
- 2. The traffic counts used in the analysis come from a variety of data sources:
- Segment Counts (Seg): 48-hour and 72-hour segment counts collected in October 2024 and May 2025.
- Peak Period Counts (Int): AM and PM peak period intersection counts collected in October 2023 and February 2024. Daily volumes were estimated using a peak period-to-daily volume ratio ranging from 0.16 to 0.25, depending on the segment location.
- PeMS Data (PeMS): Caltrans Performance Measurement System (PeMS) data, averaged from weekday (Tuesday Thursday) volumes in April 2025.
- Caltrans AADT (AADT): 2023 Annual Average Daily Traffic (AADT) counts from the Caltrans Traffic Census Program.
- 3. Functional Classification (Func): Lo-Local; Co-Collector; Mi-Minor Arterial; Ma-Major Arterial; Fr-Freeway
- 4. LOS is not reported for local roadways. For all other functional classifications, only LOS D, E, and F are reported individually, as they indicate potential operational deficiencies for automobile travel. LOS F is **bold**.
- 5. Based on physical geometry and observed traffic operation characteristics, certain segments designated as major arterials in the City's roadway network have been evaluated as minor arterials for this analysis.
- 6. Segments with heavy cross-street traffic—including Mace Boulevard and Richards Boulevard near the I-80 interchange, and Russell Boulevard near UC Davis—are not evaluated using the segment LOS threshold table; instead, they are addressed in a later section of this report.

Source: Fehr & Peers, 2025

APPENDIX C: DETAILED TRANSIT RIDERSHIP INFORMATION

Table C-1 Unitrans Share of Crowded Trips by Routes in FY 2023-2024

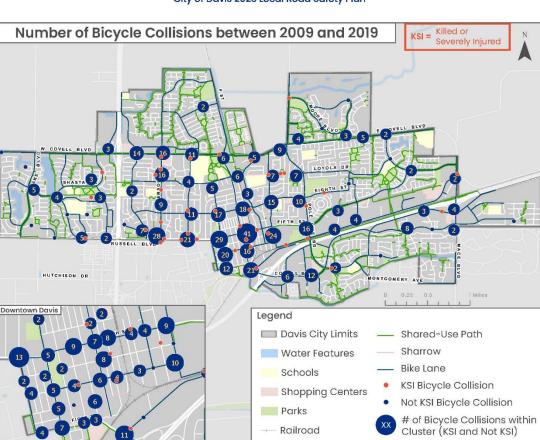
Routes	Total Annual Trips	Maximum Boardings per Trip	Capacity	Crowd Trips	Percent of Crowd Trips
А	3,379	65	60	5	0%
В	5,493	90	60	11	0%
С	5,498	90	60 (120 occasionally)	189	3%
D	6,517	90	60	110	2%
Е	5,668	74	60	3	0%
F	5,584	70	60	3	0%
G	8,747	99	60 (120 occasionally)	183	2%
J	9,534	130	60 or 120	181	2%
К	6,841	90	60 (120 occasionally)	37	1%
L	5,630	86	60	19	0%
М	6,820	86	60	20	0%
0	1,368	90	60	36	3%
Р	8,159	112	60	60	1%
Q	8,158	90	60	149	2%
Т	457	45	60	0	0%
U	1,660	90	60	85	5%
V	12,354	130	60 or 120	391	3%
W	8,115	90	60	337	4%
Z	6,060	90	60 (120 occasionally)	330	5%

Notes: 120 occasionally: Trip using a bus with 120 capacity only existed once during the data collection period.

Sources: Unitrans Ridership data of FY 2023-2024, Fehr & Peers, 2025.

Table C-2 Yolobus Monthly Ridership by Routes Serving Davis

Routes		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Monthly and Trip Avg
2019														
Route 42A & 42B	Ridership	33,275	34,419	35,656	34,511	33,964	29,743	31,225	37,505	34,893	37,778	35,058	30,447	34,040
(38 Trips Per Day)	Average Trip Ridership	28	32	30	30	29	26	27	32	31	32	31	26	29
Route 43: 6 Trips	Ridership	5,201	4,835	4,961	5,226	5,040	4,574	5,180	5,249	4,990	5,754	4,594	4,491	5,008
(3 morning & 3 evening M-F)	Average Trip Ridership	41	42	39	40	38	38	39	40	42	44	35	34	39
Route 44: 6 Trips	Ridership	1,780	1,648	1,714	1,814	1,897	1,521	1,585	1,725	1,679	2,001	1,473	1,593	1,703
(3 morning & 3 evening M-F)	Average Trip Ridership	14	14	14	14	14	13	12	13	14	15	11	12	13
Doute 220: 6 Tripe	Ridership	2,143	1,888	2,017	2,026	2,122	1,866	2,128	2,338	2,052	2,412	1,927	1,879	2,067
Route 230: 6 Trips (3 morning & 3 evening M-F)	Average Trip Ridership	17	17	16	15	16	16	16	18	17	18	15	14	16
Route 232: 4 Trips	Ridership	500	384	448	498	510	447	560	655	515	562	437	450	497
(2 morning & 2 evening M-F)	Average Trip Ridership	6	5	5	6	6	6	6	7	6	6	5	5	6
2023	-													
Route 42A & 42B	Ridership	24,296	25,960	26,302	24,928	21,877	21,540	21,924	23,540	30,106	24,343	27,557	15,106	23,957
(54 Trips Per Day)	Average Trip Ridership	15	17	16	15	13	13	13	14	19	15	17	9	15
Route 43: 2 Trips	Ridership	455	543	593	587	620	614	235	261	217	347	333	241	421
(1 morning & 1 evening M-F)	Average Trip Ridership	11	14	13	15	14	15	6	6	5	8	8	6	10
Route 44							Discor	ntinued						
Pouto 220: 2 Tripo (1 morning	Ridership	190	201	203	177	166	212	138	148	215	185	157	295	191
Route 230: 2 Trips (1 morning & 1 evening M-F)	Average Trip Ridership	5	5	4	4	4	5	3	3	5	4	4	7	5


Routes		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Monthly and Trip Avg
Route 232				•		•	Disco	ntinued	•		•	•		•
	Ridership	2,539	2,506	2,237	2,331	2,313	2,079	13,393	14,061	13,608	13,650	12,407	13,173	7,858
Route 138 (14 trips M-F)	Average Trip Ridership	9	9	7	8	8	7	48	44	49	46	44	47	27
2024														
Route 42A & 42B	Ridership	21,924	23,540	30,106	24,343	27,557	15,106	12,000	27,051	30,462	32,577	29,970	23,323	24,830
(54 Trips Per Day)	Average Trip Ridership	13	16	18	15	16	9	7	16	19	19	19	14	15
Route 43: 2 Trips	Ridership	619	655	581	865	869	751	855	1,271	2,970	1,164	665	706	998
(1 morning & 1 evening M-F)	Average Trip Ridership	15	16	14	20	20	20	19	29	74	26	18	17	24
Route 44							Disco	ntinued						•
Route 230: 2 Trips (1 morning	Ridership	138	148	215	185	157	295	212	275	199	257	189	249	210
& 1 evening M-F)	Average Trip Ridership	3	4	5	4	4	8	5	6	5	6	5	6	5
Route 232							Disco	ntinued						•
	Ridership	1,353	1,467	1,760	2,606	2,353	1,280	919	2,245	2,332	3,091	2,713	1,247	1,947
Route 138 (14 trips M-F)	Average Trip Ridership	5	5	6	8	8	5	3	7	8	10	10	4	7

Sources: Yolobus, 2025.

APPENDIX D: 2023 LRSP COLLISION MAPS

Figure D-1. Number of Bicycle Collisions between 2009 and 2019

Figure 82. Map of bicycle collisions 2009 – 2019.

City of Davis 2023 Local Road Safety Plan

94

Figure D-2. Number of Bicycle Collisions in Intersections between 2009 and 2019

Figure 83. Map of bicycle collisions in intersections 2009–2019.

Number of Bicycle Collisions in Intersections between 2009 and 2019 HUTCHISON DR Downtown Davis Legend Davis City Limits - Shared-Use Path Water Features Sharrow Schools Bike Lane Shopping Centers Bicycle Collision in Intersection Parks # of Bicycle Collisions in Intersections within Cluster Railroad 95

Figure D-3. Number of Bicycle Collisions in Road Segments between 2009 and 2019

City of Davis 2023 Local Road Safety Plan

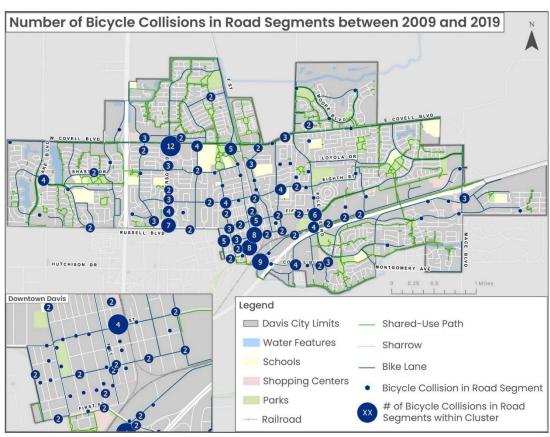


Figure 84. Map of bicycle collisions in road segments 2009-2019.

96

Figure D-4. Number of Pedestrian Collisions between 2009 and 2019

City of Davis 2023 Local Road Safety Plan

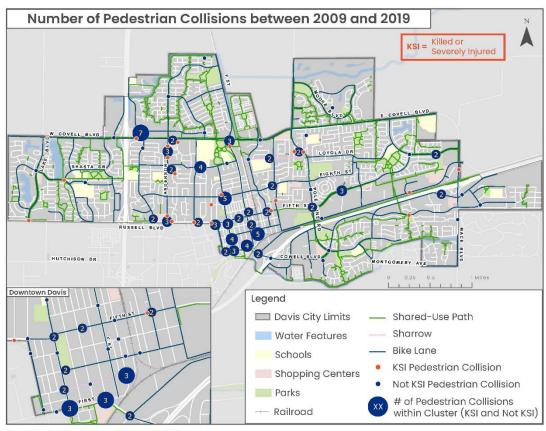


Figure 85. Map of pedestrian collisions 2009-2019.

98

Figure D-5. Number of Pedestrian Collisions in Intersections between 2009 and 2019

Figure 86. Map of pedestrian collisions in intersections 2009-2019.

Number of Pedestrian Collisions in Intersections between 2009 and 2019 HUTCHISON DE Downtown Davis Legend Davis City Limits Shared-Use Path Water Features Sharrow Schools Bike Lane Shopping Centers 3 Pedestrian Collision in Intersection Parks # of Pedestrian Collisions in Intersections within Cluster --- Railroad 99

City of Davis 2023 Local Road Safety Plan

Figure D-6. Number of Pedestrian Collisions in Road Segments between 2009 and 2019

City of Davis 2023 Local Road Safety Plan

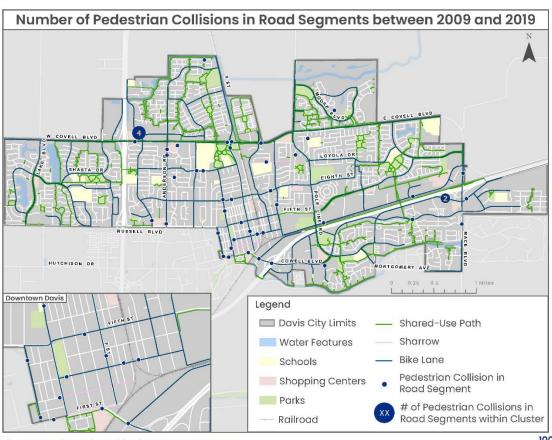


Figure 87. Map of pedestrian collisions in road segments 2009–2019.

100